Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (5): 95-102.doi: 10.6040/j.issn.1672-3961.0.2018.169

• Control Science & Engineering • Previous Articles     Next Articles

Indoor wireless positioning based on ensemble deep neural network

Dongdong SHEN(),Fengyu ZHOU*(),Mengyuan LI,Shuqian WANG,Renhe GUO   

  1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2018-05-02 Online:2018-10-01 Published:2018-05-02
  • Contact: Fengyu ZHOU E-mail:shendongdong724@foxmail.com;zhoufengyu@sdu.edu.cn
  • Supported by:
    国家重点研发计划(2017YFB1302400);国家自然科学基金资助项目(61773242);山东省重大科技创新工程资助项目(2017CXGC0926);山东省重点研发计划资助项目(公益类专项)(2017GGX30133)

Abstract:

Because of the low fault tolerance and weak anti-noise ability of fingerprint database in traditional wireless positioning model, an ensemble deep neural network wireless positioning method based on data fusion was proposed. This method could effectively overcome the interference caused by abnormal samples and noisy data on the wireless positioning system by sampling from the original fingerprint database randomly to generate train data for each base learner. During the process of fingerprint database construction, the Gauss-Occupied (G-O) data expansion method was proposed to solve the limitation of the small sample size of the wireless fingerprint database and decrease the cost of manual acquisition sharply, which increased the scope of the sample′s characterization. The results of the experiment showed that the proposed ensemble deep neural network wireless positioning model could not only improve the average positioning accuracy and the anti-noise ability of the wireless positioning system, but also reduce the maximum single point error in the positioning process.

Key words: wireless fingerprint positioning, data set expansion, artificial collection, deep neural network, ensemble learning

CLC Number: 

  • TP391

Fig.1

Results of wireless signals changed with time"

Fig.2

Gauss noise signal"

Fig.3

Data set expansion process"

Fig.4

Base learner of deep neural network"

Fig.5

Ensemble deep neural network training model"

Fig.6

Plane layout of second floor of a student′s dormitory building"

Table 1

Experimental comparison of average positioning error of G-O data set expansion method"

m
数据集 Error1 Error2
Testset1 0.401 0.513
Testset2 0.672 0.768
Testset3 0.614 0.756
Testset4 0.674 0.848

Fig.7

The average positioning error curves varying with the number of base learner"

Fig.8

Comparison of average positioning error between base learner and ensemble learner"

Table 2

Comparison of average positioning error between single deep neural network and ensemble deep neural network"

m
模型 Testset1 Testset2 Testset3 Testset4
GO_DNN_A 0.390 0.652 0.628 0.663
GO_DNN_B 0.403 0.719 0.612 0.717
GO_DNN_C 0.396 0.688 0.601 0.694
GO_DNN_D 0.385 0.669 0.595 0.678
Ensemble 0.329 0.563 0.516 0.552

Table 3

Comparison of maximum positioning error between single deep neural network and ensemble deep neural network"

m
模型 Testset1 Testset2 Testset3 Testset4
GO_DNN_A 1.944 2.170 1.912 1.970
GO_DNN_B 1.855 1.906 2.330 2.653
GO_DNN_C 1.799 1.929 2.450 2.412
GO_DNN_D 2.044 1.891 2.184 2.182
Ensemble 1.610 1.654 1.500 1.556

Table 4

Experimental comparison of average positioning error for each algorithm"

m
模型 Testset1 Testset2 Testset3 Testset4
KNN 1.974 2.648 2.437 2.921
SVM 1.812 2.437 2.159 2.766
Ensemble 0.329 0.563 0.516 0.552

Table 5

Experimental comparison of maximum positioning error for each algorithm"

m
模型 Testset1 Testset2 Testset3 Testset4
KNN 5.725 6.177 5.870 7.474
SVM 4.874 4.946 4.324 5.489
Ensemble 1.610 1.654 1.500 1.556
1 TORTEEKA P, XIU C. Indoor positioning based on WiFi fingerprint technique using fuzzy K-nearest neighbor[C]//International Bhurban Conference on Applied Sciences and Technology. Islamabad, Pakistan: IEEE, 2014: 461-465.
2 YANG R, ZHANG H. RSSI-based fingerprint positioning system for indoor wireless network[M]//Intelligent Computing in Smart Grid and Electrical Vehicles. Berlin Heidelberg, Germany:Springer, 2014:313-319.
3 曾碧, 毛勤. 改进的室内三维模糊位置指纹定位算法[J]. 山东大学学报(工学版), 2015, 45 (3): 22- 27.
ZENG Bi , MAO Qin . Improved indoor 3-D fuzzy position fingerprint localization algorithm[J]. Journal of Shandong University(Engineering Science), 2015, 45 (3): 22- 27.
4 ZHANG W, HUA X, YU K, et al. Domain clustering based WiFi indoor positioning algorithm[C]//International Conference on Indoor Positioning and Indoor Navigation. Alcalá de Henares, Spain: IEEE, 2016: 1-5.
5 XIE Y , WANG Y , NALLANATHAN A , et al. An improved K-Nearest-Neighbor indoor localization method based on spearman distance[J]. IEEE Signal Processing Letters, 2016, 23 (3): 351- 355.
doi: 10.1109/LSP.2016.2519607
6 GE X, QU Z. Optimization WIFI indoor positioning KNN algorithm location-based fingerprint[C]//IEEE International Conference on Software Engineering and Service Science.Beijing, China: IEEE, 2017: 135-137.
7 ZHU Y J , DENG Z L , LIU W L , et al. Multi-classification algorithm for indoor positioning based on support vector machine[J]. Computer Science, 2012, 39 (4): 32- 35.
8 LIU S, SI P, XU M, et al. Edge big data-enabled low-cost indoor localization based on Bayesian analysis of RSS[C]//Wireless Communications and Networking Conference (WCNC). San Francisco, USA: IEEE, 2017: 1-6.
9 DING G, TAN Z, ZHANG J, et al. Fingerprinting localization based on affinity propagation clustering and artificial neural networks[C]//Wireless Communications and Networking Conference. Shanghai, China: IEEE, 2013: 2317-2322.
10 刘侃, 张伟, 张伟东, 等. 一种基于深度神经网络的无线定位方法[J]. 计算机工程, 2016, 42 (7): 82- 85.
doi: 10.3969/j.issn.1000-3428.2016.07.014
LIU Kan , ZHANG Wei , ZHANG Weidong , et al. A wireless positioning method based on deep neural network[J]. Computer Engineering, 2016, 42 (7): 82- 85.
doi: 10.3969/j.issn.1000-3428.2016.07.014
11 QIU X, ZHANG L, REN Y, et al. Ensemble deep learning for regression and time series forecasting[C]//Computational Intelligence in Ensemble Learning. Orlando, USA: IEEE, 2015: 1-6.
12 ZHOU X, XIE L, ZHANG P, et al. An ensemble of deep neural networks for object tracking[C]//IEEE International Conference on Image Processing. Paris, France: IEEE, 2015: 843-847.
13 TSENG P H , FENG K T , LIN Y C , et al. Wireless location tracking algorithms for environments with insufficient signal sources[J]. IEEE Transactions on Mobile Computing, 2009, 8 (12): 1676- 1689.
doi: 10.1109/TMC.2009.75
14 WANG G , SO M C , LI Y . Robust convex approximation methods for TDOA-based localization under NLOS conditions[J]. IEEE Transactions on Signal Processing, 2016, 64 (13): 3281- 3296.
doi: 10.1109/TSP.2016.2539139
15 TOMIC S , BEKO M , RUI D . 3-D target localization in wireless sensor network using RSS and AOA measurements[J]. IEEE Transactions on Vehicular Technology, 2017, 66 (4): 1.
16 马春龙, 张启英. 基于高斯函数及分批估计融合理论的无线网络定位算法[J]. 长春工业大学学报(自然科学版), 2012, 33 (1): 59- 63.
doi: 10.3969/j.issn.1674-1374-B.2012.01.014
MA Chunlong , ZHANG Qiying . Wireless network positioning algorithm based on Gauss function and batch estimation fusion[J]. Journal of Changchun University of Technology(Natural Science Edition), 2012, 33 (1): 59- 63.
doi: 10.3969/j.issn.1674-1374-B.2012.01.014
17 VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//International Conference on Machine Learning. Helsinki, Finland: ACM, 2008: 1096-1103.
18 DAHL G E, SAINATH T N, HINTON G E. Improving deep neural networks for LVCSR using rectified linear units and dropout[C]//IEEE International Conference on Acoustics, Speech and Signal Processing.Vancouver. Canada: IEEE, 2013: 8609-8613.
19 SRIVASTAVA N , HINTON G , KRIZHEVSKY A , et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958.
20 REN Y , ZHANG L , SUGANNTHAN P N . Ensemble classification and regression-recent developments, applications and future directions[J]. IEEE Computational Intelligence Magazine, 2016, 11 (1): 41- 53.
doi: 10.1109/MCI.2015.2471235
21 MORETTI F , PIZZUTI S , PANZIERI S , et al. Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling[J]. Neurocomputing, 2015, 167 (C): 3- 7.
22 王田苗, 陶永, 魏洪兴, 等. 基于智能空间的家庭服务机器人混合定位方法[J]. 北京航空航天大学学报, 2009, 35 (2): 231- 235.
WANG Tianmiao , TAO Yong , WEI Hongxing , et al. Hybrid location method for home service robot based on intelligent space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35 (2): 231- 235.
[1] Pu ZHANG,Chang LIU,Yong WANG. Suggestion sentence classification model based on feature fusion and ensemble learning [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 47-54.
[2] TANG Leshuang, TIAN Guohui, HUANG Bin. An object fusion recognition algorithm based on DSmT [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 50-56.
[3] LIU Fan, CHEN Zehua, CHAI Jing. A new multi-focus image fusion method based on deep neural network model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 7-13.
[4] WANG Lihong, LI Qiang. A selective ensemble method for traveling salesman problems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 42-48.
[5] CHEN Dawei, YAN Zhao*, LIU Haoyan. Overfitting phenomenon  of  the series of single value decomposition algorithms in rating prediction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(3): 15-21.
[6] FANG Xiao-nan1,2, ZHANG Hua-xiang1,2*, GAO Shuang1,2. Web spam detection based on SMOTE and random forests [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(1): 22-27.
[7] ZHANG Ling-wei, WAN Wen-qiang. Study on the cost-sensitive ensemble learning algorithm based on the cloud computing platform [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 19-23.
[8] XIE Huo-sheng, LIU Min. An ensemble co-training algorithm based on active learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(3): 1-5.
[9] LI Xiao-bin1, LI Shi-yin2. Ensemble learning of multi-classifier for early classification of time series [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(4): 73-78.
[10] LI Xia1, WANG Lian-xi2, JIANG Sheng-yi1. Ensemble learning based feature selection for imbalanced problems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(3): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22 -28 .
[2] HUANG Jinchao. A new method for muti-objects image segmentation based on faster region proposal networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 20 -26 .
[3] TANG Qingshun, JIN Lu, LI Guodong, WU Chunfu. Robotic manipulators tracking control based on adaptive terminal sliding mode controller[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 45 -53 .
[4] DAI Ping, LI Ning*. A fast SVM-based feature selection method[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 60 -65 .
[5] ZHANG Jianming, LIU Quansheng, TANG Zhicheng, ZHAN Ting, JIANG Yalong. New peak shear strength criterion with inclusion of shear action history[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 77 -81 .
[6] WANG Huan, ZHOU Zhongmei. An over sampling algorithm based on clustering[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 134 -139 .
[7] YANG Ai-min1, ZHOU Yong-mei1, DENG He2, ZHOU Jian-feng3. Method of feature generation and selection for network traffic classification[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 1 -7 .
[8] YOU Ming-yu, CHEN Yan, LI Guo-zheng. Im-IG: A novel feature selection method for imbalanced problems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 123 -128 .
[9] WU Guo-yao1, MA Li-yong2. A method based on FFD B-spline registration of the iris image fusion[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 24 -27 .
[10] XIAO Qiao, PEI Jihong, WANG Lixia, GONG Zhicheng. Ship detection in remote sensing image based on the fuzzy fusion of multi-channel Gabor filtering[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 29 -35 .