Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (1): 14-20.doi: 10.6040/j.issn.1672-3961.0.2019.415

• Machine Learning & Data Mining • Previous Articles     Next Articles

Entity alignment method based on adaptive attribute selection

Jialin SU1,2(),Yuanzhuo WANG1,Xiaolong JIN1,Xueqi CHENG1   

  1. 1. CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China
    2. School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2019-07-22 Online:2020-02-20 Published:2020-02-14
  • Supported by:
    国家重点研发计划项目课题(2016YFB1000902);国家自然科学基金资助项目(61572469);国家自然科学基金资助项目(61772501);国家自然科学基金资助项目(61572473);国家自然科学基金资助项目(91646120)

Abstract:

Most existing entity alignment methods typically relied on external information and required expensive manual feature construction to complete alignment. Knowledge graph-based methods used only semantic information and failed to use structural information. Therefore, this paper proposed a new entity alignment method based on adaptive attribute selection, training an entity alignment model based on the joint embedding of the two knowledge graphs, which combined the semantic and structural information. Also, this paper proposed the use of strong attribute constraint based on adaptive attribute selection, which could adaptively generate the most effective attribute category and weight, to improve the performance of entity alignment. Experiments on two realistic datasets showed that, compared with traditional methods, the precision of the proposed method was improved by 11%.

Key words: knowledge graph, entity alignment, adaptive attribute selection, joint embedding, strong attribute constraint

CLC Number: 

  • TP391

Fig.1

Entity alignment method based on adaptive attribute selection"

Table 1

Data set for entity alignment"

关系路径 Source1实体数 Source2实体数 训练集三元组数 验证集三元组数 测试集三元组数 实体总数 关系类型总数 属性类型总数 单网络三元组总数
Cora 145 143 76 20 20 1 441 7 10 2 180
Baidu Douban M/TV 762 762 462 150 150 8 143 5 6 27 960

Table 2

Results for entity alignment method based on adaptive attribute selection"

使用方法 Cora Baidu Douban M/TV
准确率/% 召回率/% F1/% 准确率/% 召回率/% F1/%
TransE 87.06 63.79 73.63 98.97 88.58 93.49
cross-KG 92.04 65.69 76.64 99.31 82.76 90.28
SEEA 90.72 75.86 82.64 99.61 90.23 94.69
文献[4] 96.97 72.41 82.91 99.80 94.43 97.04
文献[5] 85.03 85.03 85.03 88.21 88.21 88.21
本研究 98.51 84.62 91.04 98.00 96.00 96.99
1 MENG Rui , CHEN Lei , TONG Yongxin , et al. Knowledge base semantic integration using crowdsourcing[J]. TKDE, 2017, 27 (5): 1087- 1100.
2 CAI Pengshan, LI Wei, FENG Yansong, et al. Learning knowledge representation across knowledge graphs[C]//AAAI 2017 Workshop on Knowledge-Based Techniques for Problem Solving and Reasoning (KnowProS'17). Hawaii, USA: IEEE, 2017.
3 GUAN Saiping , JIN Xiaolong , WANG Yuanzhuo , et al. Self-learning and embedding based entity alignment[J]. Knowledge and Information Systems, 2018, (24): 1- 26.
4 苏佳林, 王元卓, 靳小龙, 等. 融合语义和结构信息的知识图谱实体对齐[J]. 山西大学学报(自然科学版), 2019, 42 (1): 23- 30.
SU Jialin , WANG Yuanzhuo , JIN Xiaolong , et al. Knowledge graph entity alignment with semantic and structural information[J]. Journal of Shanxi University(Nattural Science Edition), 2019, 42 (1): 23- 30.
5 TRSEDYA B D, Qi J, ZHANG R. Entity alignment between knowledge graphs using attribute embeddings[C]// AAAI Thirty-Third Conference on Artificial Intelligence. Hawaii, USA: IEEE, 2019.
6 NGOMO A , AUER S . Limes: a time-efficient approach for large-scale link discovery on the web of data[J]. International Joint Conference on Artificial Intelligence, 2011, 1 (15): 2312- 2317.
7 SCHARFFE F, YANBIN F L, ZHOU C. Rdf-ai: an architecture for rdf datasets matching, fusion and interlink [C]// Proceeding of IJCAI 2009 Workshop on Identity and Knowledge Representation (IR-KR). Pasadena, CA, USA: ACM, 2009.
8 VOLZ J, BIZEr C, GAEDKE M, et al. Discovering and maintaining links on the web of data[C]// Proceedings of the 8th International Semantic Web Conference. Washington, USA, IEEE, 2009.
9 RAIMOND Y, SUTTON C, SANDLER M. Automatic interlinking of music datasets on the semantic web[C]//Proceedings of the 1st Workshop about Linked Data on the Web. Beijing, China: IEEE, 2008.
10 NIU Xing, RONG Shu, WANG Haofen, et al. An effective rule miner for instance matching in a web of data[C]//Proceedings of the 21st ACM international conference on Information and knowledge management. Maui, USA: ACM, 2012.
11 BORDES A, USUNIER N, GARCIA Duran A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, USA: NIPS, 2013.
12 LIN Yankai, LIU Zhiyuan, SUN Maosong, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of AAAI Conference on Artificial Intelligence, 2015. Texas, USA: IEEE, 2015.
13 WANG Zhen, ZHANG Jianwen, FENG Jianlin, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings the Twenty-eighth AAAI Conference on Artificial Intelligence, 2014. Québec City, Canada: IEEE, 2014.
14 JI Guoliang, HE Shizhu, XU Liheng, et al. Knowledge graph embedding via dynamic mapping matrix[C]// Meeting of the Association for Computational Linguistics & the International Joint Conference on Natural Language Processing. Beijing, China: ACL, 2015.
15 CHEN Muhao, TIAN Yingtao, YANG Mohan, et al. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]// International Joint Conference on Artificial Intelligence. Vancouver, Canada: ACL, 2017.
[1] Guoyong CAI,Qiang LIN,Kaiqi REN. Cross-domain text sentiment classification based on domain-adversarialnetwork and BERT [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 1-7,20.
[2] Yuanxi YAO. Analysis of wind power convergence trend quantitation based on sub-scene reconstruction [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 86-92.
[3] Junmei YUE,Dongmei ZHANG. Lightweight self-adaptive CSI-based positioning algorithm in underground mine [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 112-118.
[4] Ji ZHANG,Cui JIN,Hongyuan WANG,Shoubing CHEN. Pedestrian recognition based on singular value decomposition pedestrian alignment network [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 91-97.
[5] Zongtang ZHANG,Sen WANG,Shilin SUN. An ensemble learning algorithm for unbalanced data classification [J]. Journal of Shandong University(Engineering Science), 2019, 49(4): 8-13.
[6] Xindi CHEN,Tianrui LI,Huanhuan YANG. Visualization of interactive ThemeRiver based on time-series data [J]. Journal of Shandong University(Engineering Science), 2019, 49(4): 29-35, 43.
[7] Jinchao HUANG. Object tracking algorithm based on deep residual features and entropy energy optimization [J]. Journal of Shandong University(Engineering Science), 2019, 49(4): 14-23.
[8] Jiachen WANG,Xianghong TANG,Jianguang LU. Research onfeature selection technology in bearing fault diagnosis [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 80-87, 95.
[9] Hongbin ZHANG,Diedie QIU,Renzhong WU,Tao ZHU,Jin HUA,Donghong JI. Image attribute annotation based on extreme gradient boosting algorithm [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 8-16.
[10] Xiaoxiong HOU,Xinzheng XU,Jiong ZHU,Yanyan GUO. Computer aided diagnosis method for breast cancer based on AlexNet and ensemble classifiers [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 74-79.
[11] Xu YANG,Hui CHEN,Yousi LIN,Changhe TU. Automatic landmarks identification and tracking of bat flight [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 67-73.
[12] Run XIANG,Sufen CHEN,Xueqiang ZENG. Facial age estimation based on multivariate multiple regression [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 54-60.
[13] Yun HU,Shu ZHANG,Hui LI,Kankan SHE,Jun SHI. Recommendation algorithm based on trust network reconfiguration [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 42-46.
[14] Mingxia GAO,Jingwei LI. Chinese short text classification method based on word2vec embedding [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 34-41.
[15] Tong LI,Ran MA,Honghe ZHENG,Ping AN,Xiangyu HU. An error sensitivity model based on video statistical features [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 116-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[2] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[3] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[4] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[5] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[6] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27 -32 .
[7] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .
[8] WANG Li-ju,HUANG Qi-cheng,WANG Zhao-xu . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 51 -56 .
[9] SUN Guohua, WU Yaohua, LI Wei. The effect of excise tax control strategy on the supply chain system performance[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 63 -68 .
[10] SUN Dianzhu, ZHU Changzhi, LI Yanrui. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 84 -86 .