Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (3): 120-128.doi: 10.6040/j.issn.1672-3961.0.2018.443
• Chemistry and Environment • Previous Articles
CLC Number:
1 | KHAN M B , PARVAZ M , KHAN Z H , et al. Graphene oxide: synthesis and characterization[M]. Singapore: Springer Singapore, 2017: 1- 28. |
2 |
LEE J H , WEE S B , KWON M S , et al. Strategic dispersion of carbon black and its application to ink-jet-printed lithium cobalt oxide electrodes for lithium ion batteries[J]. Journal of Power Sources, 2011, 196 (15): 6449- 6455.
doi: 10.1016/j.jpowsour.2011.03.041 |
3 |
SENGUPTA R , BHATTACHARYA M , BANDYOPADHYAY S , et al. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites[J]. Progress in Polymer Science, 2011, 36 (5): 638- 670.
doi: 10.1016/j.progpolymsci.2010.11.003 |
4 |
ZHAO X C , LU D W , HAO F , et al. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity[J]. Journal of Hazardous Materials, 2015, 292, 98- 107.
doi: 10.1016/j.jhazmat.2015.03.023 |
5 |
THROWER P A . Toxicology of carbon nanomaterials[J]. Carbon, 2006, 44 (6): 1027.
doi: 10.1016/j.carbon.2005.12.022 |
6 |
CHANG C C , CHEN C Y , CHIU H F , et al. Elastases from inflammatory and dendritic cells mediate ultrafine carbon black induced acute lung destruction in mice[J]. Inhalation Toxicology, 2011, 23 (10): 616- 626.
doi: 10.3109/08958378.2011.598965 |
7 | INOUE K , YANAGISAWA R , KOIKE E , et al. Effects of carbon black nanoparticles on elastase-induced emphysematous lung injury in mice[J]. Basic & Clinical Pharmacology & Toxicology, 2011, 108 (4): 234- 240. |
8 |
BUCHNER N , ALE-AGHA N , JAKOB S , et al. Unhealthy diet and ultrafine carbon black particles induce senescence and disease associated phenotypic changes[J]. Experimental Gerontology, 2013, 48 (1): 8- 16.
doi: 10.1016/j.exger.2012.03.017 |
9 | INOUE H , SHIMADA A , KAEWAMATAWONG T , et al. Ultrastructural changes of the air-blood barrier in mice after intratracheal instillation of lipopolysaccharide and ultrafine carbon black particles[J]. Experimental and Toxicologic Pathology, 2009, 61 (1): 51- 58. |
10 |
TIMBLIN C R , SHUKLA A , BERLANGER I , et al. Ultrafine airborne particles cause increases in protooncogene expression and proliferation in alveolar epithelial cells[J]. Toxicology and Applied Pharmacology, 2002, 179 (2): 98- 104.
doi: 10.1006/taap.2001.9343 |
11 |
WU Z C , ZHANG B , YAN B . Regulation of enzyme activity through interactions with nanoparticles[J]. International Journal of Molecular Sciences, 2009, 10 (10): 4198- 4209.
doi: 10.3390/ijms10104198 |
12 |
ZHANG R , WU Q Q , LIU R T . Characterizing the binding interaction between ultrafine carbon black (UFCB) and catalase: electron microscopy and spectroscopic analysis[J]. RSC Advances, 2017, 7 (67): 42549- 42558.
doi: 10.1039/C7RA03805D |
13 |
CASTILLO C , PEREIRA V , ABUELO A , et al. Preliminary results in the redox balance in healthy cats: influence of age and gender[J]. Journal of Feline Medicine and Surgery, 2013, 15 (4): 328- 332.
doi: 10.1177/1098612X12467996 |
14 |
HU X L , CUI S Y , LIU J Q . Fluorescence studies of interaction between flavonol p-coumaroylglucoside tiliroside and bovine serum albumin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 77 (2): 548- 553.
doi: 10.1016/j.saa.2010.06.016 |
15 |
ZHANG Y Z , ZHOU B , LIU Y X , et al. Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene[J]. Journal of Fluorescence, 2008, 18 (1): 109- 118.
doi: 10.1007/s10895-007-0247-4 |
16 |
MONDAL S , DAS S , GHOSH S . Interaction of myoglobin with cationic gemini surfactants in phosphate buffer at pH 7.4[J]. Journal of Surfactants and Detergents, 2015, 18 (3): 471- 476.
doi: 10.1007/s11743-015-1680-z |
17 | JING M , LIU Y , SONG W , et al. Oxidative damage induced by copper in mouse primary hepatocytes by single-cell analysis[J]. Environmental Science & Pollution Research, 2016, 23 (2): 1335- 1343. |
18 | SRIKANTH K , PEREIRA E , DUARTE A C , et al. Assessment of cytotoxicity and oxidative stress induced by titanium oxide nanoparticles on chinook salmon cells[J]. Environmental Science & Pollution Research, 2015, 22 (20): 15579- 15586. |
19 | MITRY R R , HUGHES R D , AW M M , et al. Human hepatocyte isolation and relationship of cell viability to early graft function[J]. Cell Transplantation, 2003, 12 (1): 69- 74. |
20 |
GUAN S , GE D , LIU T Q , et al. Protocatechuic acid promotes cell proliferation and reduces basal apoptosis in cultured neural stem cells[J]. Toxicology in Vitro, 2009, 23 (2): 201- 208.
doi: 10.1016/j.tiv.2008.11.008 |
21 | GU Q , KENNY J E . Improvement of inner filter effect correction based on determination of effective geometric parameters using a conventional fluorimeter[J]. Analytical Chemistry, 2009, 81 (1): 420- 426. |
22 | WU H , CHEN M M , SHANG M T , et al. Insights into the binding behavior of bovine serum albumin to black carbon nanoparticles and induced cytotoxicity[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 2005, 1- 7. |
23 |
WU Y K , GUO Y F , SONG H Y , et al. Oxygen content determines the bio-reactivity and toxicity profiles of carbon black particles[J]. Ecotoxicology and Environmental Safety, 2018, 150, 207- 214.
doi: 10.1016/j.ecoenv.2017.12.044 |
24 |
FOUCAUD L , GOULAOUIC S , BENNASROUNE A , et al. Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule?[J]. Toxicology in Vitro, 2010, 24 (6): 1512- 1520.
doi: 10.1016/j.tiv.2010.07.012 |
25 |
HUSSAIN S , THOMASSEN L C J , FERECATU I , et al. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells[J]. Particle and Fibre Toxicology, 2010, 7, 17.
doi: 10.1186/1743-8977-7-17 |
26 | GAWEL S , WARDAS M , NIEDWOROK E , et al. Malondialdehyde (MDA) as a lipid peroxidation marker[J]. Wiadomosci Lekarskie, 2004, 57 (9-10): 453- 455. |
27 | AYALA A , MUNOZ M F , ARGUELLES S . Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal[J]. Oxidative Medicine and Cellular Longevity, 2014, 2014, 360438. |
28 | YU H , ZHANG J , TONG Q , et al. Icariin attenuates carbon black-induced pulmonary inflammatory response and oxidative stress in mice[J]. International Journal of Clinical and Experimental Pathology, 2016, 9 (1): 81- 88. |
29 | LIU S , GUO X C , ZHANG X X , et al. Impact of iron precipitant on toxicity of arsenic in water: a combined in vivo and in vitro study[J]. Environmental Science & Technology, 2013, 47 (7): 3432- 3438. |
30 |
TENG Y , ZHANG H , LIU R T . Molecular interaction between 4-aminoantipyrine and catalase reveals a potentially toxic mechanism of the drug[J]. Molecular Biosystems, 2011, 7 (11): 3157- 3163.
doi: 10.1039/c1mb05271c |
31 |
BANERJEE M , BALLAL A , APTE K . Mn-catalase (Alr0998) protects the photosynthetic, nitrogen-fixing cyanobacterium anabaena PCC7120 from oxidative stress[J]. Environmental Microbiology, 2012, 14 (11): 2891- 2900.
doi: 10.1111/j.1462-2920.2012.02847.x |
32 |
LIU W , ROSE J , PLANTEVIN S , et al. Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona?[J]. Nanoscale, 2013, 5 (4): 1658- 1668.
doi: 10.1039/c2nr33611a |
33 |
KOKKINOPOULOU M , SIMON J , LANDFESTER K , et al. Visualization of the protein corona: towards a biomolecular understanding of nanoparticlecell-interactions[J]. Nanoscale, 2017, 9 (25): 8858- 8870.
doi: 10.1039/C7NR02977B |
34 |
XU M H , SHENG Z H , LU W Y , et al. Probing the interaction of mutiwalled carbon nanotubes and catalase: mutispectroscopic approach[J]. Journal of Biochemical and Molecular Toxicology, 2012, 26 (12): 493- 498.
doi: 10.1002/jbt.21454 |
35 |
PAUL B K , BHATTACHARJEE K , BOSE S , et al. A spectroscopic investigation on the interaction of a magnetic ferrofluid with a model plasma protein: effect on the conformation and activity of the protein[J]. Physical Chemistry Chemical Physics, 2012, 14 (44): 15482- 15493.
doi: 10.1039/c2cp42415k |
36 | ALBANI J R . Principles and applications of fluorescence spectroscopy[M]. Oxford, UK: Blackwell Science, 2007: 101- 138. |
37 |
MALLICK A , HALDAR B , CHATTOPADHYAY N . Spectroscopic investigation on the interaction of ICT probe 3-acetyl-4-oxo-6, 7-dihydro-12H indolo-2, 3-a quinolizine with serum albumins[J]. Journal of Physical Chemistry B, 2005, 109 (30): 14683- 14690.
doi: 10.1021/jp051367z |
38 |
WANG Y Q , ZHANG H M , CAO J , et al. Interaction of methotrexate with trypsin analyzed by spectroscopic and molecular modeling methods[J]. Journal of Molecular Structure, 2013, 1051, 78- 85.
doi: 10.1016/j.molstruc.2013.07.048 |
39 |
ZHANG H M , TANG B P , WANG Y Q . The interaction of lysozyme with caffeine, theophylline and theobromine in solution[J]. Molecular Biology Reports, 2010, 37 (7): 3127- 3136.
doi: 10.1007/s11033-009-9891-x |
40 |
MU Y , LIN J , LIU R T . Interaction of sodium benzoate with trypsin by spectroscopic techniques[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2011, 83 (1): 130- 135.
doi: 10.1016/j.saa.2011.07.092 |
41 |
WU T Q , WU Q , GUAN S Y , et al. Binding of the environmental pollutant naphthol to bovine serum albumin[J]. Biomacromolecules, 2007, 8 (6): 1899- 1906.
doi: 10.1021/bm061189v |
42 | VARLAN A , HILLEBRAND M . Study on the interaction of 2-carboxyphenoxathiin with bovine serum albumin and human serum albumin by fluorescence spectroscopy and circular dichroism[J]. Revue Roumaine De Chimie, 2010, 55 (1): 69- 77. |
43 | KOSHLAND D E . Correlation of structure and function in enzyme action[J]. Science, 1963, 142 (359): 1533- 1541. |
No related articles found! |
|