Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (3): 120-128.doi: 10.6040/j.issn.1672-3961.0.2018.443

• Chemistry and Environment • Previous Articles    

Toxic effects and mechanisms of oxidative stress induced by modified ultrafine carbon black

Chenhao JIA(),Rutao LIU*()   

  1. School of Environment Science and Engineering, Shandong University, Qingdao 266200, Shandong, China
  • Received:2018-10-18 Online:2019-06-20 Published:2019-06-27
  • Contact: Rutao LIU E-mail:1272466157@qq.com;rutaoliu@sdu.edu.cn
  • Supported by:
    国家自然科学基金资助项目(21477067);国家自然科学基金资助项目(21777088);高等学校博士学科点专项科研基金资助项目(708058)

Abstract:

To study the toxic effects and mechanisms of oxidative stress induced by modified ultrafine carbon black (MCB), mouse hepatocytes and catalase (CAT) were exposed to MCB solutions. The cytotoxicity of MCB was assessed by CCK-8 kit, malondialdehyde (MDA) kit and CAT activity assay. The effects on CAT structure and function of MCB were investigated by utilizing fluorescence, UV—vis absorption and circular dichroism spectroscopy. The experiment results demonstrated that the hepatocyte viability decreased with the increase of MCB concentration. Low MCB doses (< 30 mg/L) increased CAT activity to protectcells from oxidative damage while high doses of MCB (> 30 mg/L) caused accumulation of MDA and redox imbalance in the cells, which induced oxidative damage in the liver. Spectroscopy studies found that MCB destroyed the secondary and tertiary structure of CAT and changed the microenvironment of amino acids, which made denaturation of the peptide chain. As a result, changes of skeleton structure reduced the activity of CAT. This study clarified the oxidative mechanism of MCB causing oxidative stress effects and provided a reference for the toxicity mechanism of nanomaterials.

Key words: modified ultrafine carbon black, oxidative stress, liver cells, catalase, fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy

CLC Number: 

  • X503.1

Fig.1

TEM images and SEM images of MCB"

Fig.2

Dispersion of SB-100 and MCB in PB buffer"

Fig.3

Relative cell viability of hepatocytes under different exposure conditions"

Fig.4

Dose-effect fitting curve of cell viability as a function of MCB exposure concentration"

Fig.5

MDA contents in hepatocytes in the presence of MCB"

Fig.6

CAT relative activity exposed to different concentrations of MCB after 24 hours"

Fig.7

Effect of MCB on CAT fluorescence spectra"

Fig.8

UV-visible absorption spectra of CAT"

Fig.9

Schematic diagram for the binding of MCB with CAT"

Fig.10

Three-dimensional fluorescence spectrum of MCB and CAT"

Table 1

Three-dimensional characteristics of CAT combined with MCB"

MCB暴露的质量浓度/(mg·L-1) 峰1 峰2
激发波长/发射波长(nm/nm) 荧光强度 激发波长/发射波长(nm/nm) 荧光强度
0 280/280 4 309.0 280/326 5 600.3
2.5 280/284 9 035.4 280/328 5 006.1
5 280/284 9 078.6 280/328 3 862.7
10 280/284 9 595.5 280/330 2 633.3
15 280/284 9 615.8 280/330 1 493.1
20 280/284 9 680.5 280/332 1 040.7

Table 2

Effects of MCB on the secondary structure of CAT"

MCB暴露的质量浓度/ (mg·L-1) 二级结构含量/%
α-螺旋 β-折叠 β-转角 无序结构
0 43.4 18.8 14.4 23.1
5 45.8 18.0 14.2 22.9
10 47.9 17.4 13.9 21.6
20 49.5 16.7 13.5 21.3

Fig.11

CD spectra of CAT-MCB system"

1 KHAN M B , PARVAZ M , KHAN Z H , et al. Graphene oxide: synthesis and characterization[M]. Singapore: Springer Singapore, 2017: 1- 28.
2 LEE J H , WEE S B , KWON M S , et al. Strategic dispersion of carbon black and its application to ink-jet-printed lithium cobalt oxide electrodes for lithium ion batteries[J]. Journal of Power Sources, 2011, 196 (15): 6449- 6455.
doi: 10.1016/j.jpowsour.2011.03.041
3 SENGUPTA R , BHATTACHARYA M , BANDYOPADHYAY S , et al. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites[J]. Progress in Polymer Science, 2011, 36 (5): 638- 670.
doi: 10.1016/j.progpolymsci.2010.11.003
4 ZHAO X C , LU D W , HAO F , et al. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity[J]. Journal of Hazardous Materials, 2015, 292, 98- 107.
doi: 10.1016/j.jhazmat.2015.03.023
5 THROWER P A . Toxicology of carbon nanomaterials[J]. Carbon, 2006, 44 (6): 1027.
doi: 10.1016/j.carbon.2005.12.022
6 CHANG C C , CHEN C Y , CHIU H F , et al. Elastases from inflammatory and dendritic cells mediate ultrafine carbon black induced acute lung destruction in mice[J]. Inhalation Toxicology, 2011, 23 (10): 616- 626.
doi: 10.3109/08958378.2011.598965
7 INOUE K , YANAGISAWA R , KOIKE E , et al. Effects of carbon black nanoparticles on elastase-induced emphysematous lung injury in mice[J]. Basic & Clinical Pharmacology & Toxicology, 2011, 108 (4): 234- 240.
8 BUCHNER N , ALE-AGHA N , JAKOB S , et al. Unhealthy diet and ultrafine carbon black particles induce senescence and disease associated phenotypic changes[J]. Experimental Gerontology, 2013, 48 (1): 8- 16.
doi: 10.1016/j.exger.2012.03.017
9 INOUE H , SHIMADA A , KAEWAMATAWONG T , et al. Ultrastructural changes of the air-blood barrier in mice after intratracheal instillation of lipopolysaccharide and ultrafine carbon black particles[J]. Experimental and Toxicologic Pathology, 2009, 61 (1): 51- 58.
10 TIMBLIN C R , SHUKLA A , BERLANGER I , et al. Ultrafine airborne particles cause increases in protooncogene expression and proliferation in alveolar epithelial cells[J]. Toxicology and Applied Pharmacology, 2002, 179 (2): 98- 104.
doi: 10.1006/taap.2001.9343
11 WU Z C , ZHANG B , YAN B . Regulation of enzyme activity through interactions with nanoparticles[J]. International Journal of Molecular Sciences, 2009, 10 (10): 4198- 4209.
doi: 10.3390/ijms10104198
12 ZHANG R , WU Q Q , LIU R T . Characterizing the binding interaction between ultrafine carbon black (UFCB) and catalase: electron microscopy and spectroscopic analysis[J]. RSC Advances, 2017, 7 (67): 42549- 42558.
doi: 10.1039/C7RA03805D
13 CASTILLO C , PEREIRA V , ABUELO A , et al. Preliminary results in the redox balance in healthy cats: influence of age and gender[J]. Journal of Feline Medicine and Surgery, 2013, 15 (4): 328- 332.
doi: 10.1177/1098612X12467996
14 HU X L , CUI S Y , LIU J Q . Fluorescence studies of interaction between flavonol p-coumaroylglucoside tiliroside and bovine serum albumin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 77 (2): 548- 553.
doi: 10.1016/j.saa.2010.06.016
15 ZHANG Y Z , ZHOU B , LIU Y X , et al. Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene[J]. Journal of Fluorescence, 2008, 18 (1): 109- 118.
doi: 10.1007/s10895-007-0247-4
16 MONDAL S , DAS S , GHOSH S . Interaction of myoglobin with cationic gemini surfactants in phosphate buffer at pH 7.4[J]. Journal of Surfactants and Detergents, 2015, 18 (3): 471- 476.
doi: 10.1007/s11743-015-1680-z
17 JING M , LIU Y , SONG W , et al. Oxidative damage induced by copper in mouse primary hepatocytes by single-cell analysis[J]. Environmental Science & Pollution Research, 2016, 23 (2): 1335- 1343.
18 SRIKANTH K , PEREIRA E , DUARTE A C , et al. Assessment of cytotoxicity and oxidative stress induced by titanium oxide nanoparticles on chinook salmon cells[J]. Environmental Science & Pollution Research, 2015, 22 (20): 15579- 15586.
19 MITRY R R , HUGHES R D , AW M M , et al. Human hepatocyte isolation and relationship of cell viability to early graft function[J]. Cell Transplantation, 2003, 12 (1): 69- 74.
20 GUAN S , GE D , LIU T Q , et al. Protocatechuic acid promotes cell proliferation and reduces basal apoptosis in cultured neural stem cells[J]. Toxicology in Vitro, 2009, 23 (2): 201- 208.
doi: 10.1016/j.tiv.2008.11.008
21 GU Q , KENNY J E . Improvement of inner filter effect correction based on determination of effective geometric parameters using a conventional fluorimeter[J]. Analytical Chemistry, 2009, 81 (1): 420- 426.
22 WU H , CHEN M M , SHANG M T , et al. Insights into the binding behavior of bovine serum albumin to black carbon nanoparticles and induced cytotoxicity[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 2005, 1- 7.
23 WU Y K , GUO Y F , SONG H Y , et al. Oxygen content determines the bio-reactivity and toxicity profiles of carbon black particles[J]. Ecotoxicology and Environmental Safety, 2018, 150, 207- 214.
doi: 10.1016/j.ecoenv.2017.12.044
24 FOUCAUD L , GOULAOUIC S , BENNASROUNE A , et al. Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule?[J]. Toxicology in Vitro, 2010, 24 (6): 1512- 1520.
doi: 10.1016/j.tiv.2010.07.012
25 HUSSAIN S , THOMASSEN L C J , FERECATU I , et al. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells[J]. Particle and Fibre Toxicology, 2010, 7, 17.
doi: 10.1186/1743-8977-7-17
26 GAWEL S , WARDAS M , NIEDWOROK E , et al. Malondialdehyde (MDA) as a lipid peroxidation marker[J]. Wiadomosci Lekarskie, 2004, 57 (9-10): 453- 455.
27 AYALA A , MUNOZ M F , ARGUELLES S . Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal[J]. Oxidative Medicine and Cellular Longevity, 2014, 2014, 360438.
28 YU H , ZHANG J , TONG Q , et al. Icariin attenuates carbon black-induced pulmonary inflammatory response and oxidative stress in mice[J]. International Journal of Clinical and Experimental Pathology, 2016, 9 (1): 81- 88.
29 LIU S , GUO X C , ZHANG X X , et al. Impact of iron precipitant on toxicity of arsenic in water: a combined in vivo and in vitro study[J]. Environmental Science & Technology, 2013, 47 (7): 3432- 3438.
30 TENG Y , ZHANG H , LIU R T . Molecular interaction between 4-aminoantipyrine and catalase reveals a potentially toxic mechanism of the drug[J]. Molecular Biosystems, 2011, 7 (11): 3157- 3163.
doi: 10.1039/c1mb05271c
31 BANERJEE M , BALLAL A , APTE K . Mn-catalase (Alr0998) protects the photosynthetic, nitrogen-fixing cyanobacterium anabaena PCC7120 from oxidative stress[J]. Environmental Microbiology, 2012, 14 (11): 2891- 2900.
doi: 10.1111/j.1462-2920.2012.02847.x
32 LIU W , ROSE J , PLANTEVIN S , et al. Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona?[J]. Nanoscale, 2013, 5 (4): 1658- 1668.
doi: 10.1039/c2nr33611a
33 KOKKINOPOULOU M , SIMON J , LANDFESTER K , et al. Visualization of the protein corona: towards a biomolecular understanding of nanoparticlecell-interactions[J]. Nanoscale, 2017, 9 (25): 8858- 8870.
doi: 10.1039/C7NR02977B
34 XU M H , SHENG Z H , LU W Y , et al. Probing the interaction of mutiwalled carbon nanotubes and catalase: mutispectroscopic approach[J]. Journal of Biochemical and Molecular Toxicology, 2012, 26 (12): 493- 498.
doi: 10.1002/jbt.21454
35 PAUL B K , BHATTACHARJEE K , BOSE S , et al. A spectroscopic investigation on the interaction of a magnetic ferrofluid with a model plasma protein: effect on the conformation and activity of the protein[J]. Physical Chemistry Chemical Physics, 2012, 14 (44): 15482- 15493.
doi: 10.1039/c2cp42415k
36 ALBANI J R . Principles and applications of fluorescence spectroscopy[M]. Oxford, UK: Blackwell Science, 2007: 101- 138.
37 MALLICK A , HALDAR B , CHATTOPADHYAY N . Spectroscopic investigation on the interaction of ICT probe 3-acetyl-4-oxo-6, 7-dihydro-12H indolo-2, 3-a quinolizine with serum albumins[J]. Journal of Physical Chemistry B, 2005, 109 (30): 14683- 14690.
doi: 10.1021/jp051367z
38 WANG Y Q , ZHANG H M , CAO J , et al. Interaction of methotrexate with trypsin analyzed by spectroscopic and molecular modeling methods[J]. Journal of Molecular Structure, 2013, 1051, 78- 85.
doi: 10.1016/j.molstruc.2013.07.048
39 ZHANG H M , TANG B P , WANG Y Q . The interaction of lysozyme with caffeine, theophylline and theobromine in solution[J]. Molecular Biology Reports, 2010, 37 (7): 3127- 3136.
doi: 10.1007/s11033-009-9891-x
40 MU Y , LIN J , LIU R T . Interaction of sodium benzoate with trypsin by spectroscopic techniques[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2011, 83 (1): 130- 135.
doi: 10.1016/j.saa.2011.07.092
41 WU T Q , WU Q , GUAN S Y , et al. Binding of the environmental pollutant naphthol to bovine serum albumin[J]. Biomacromolecules, 2007, 8 (6): 1899- 1906.
doi: 10.1021/bm061189v
42 VARLAN A , HILLEBRAND M . Study on the interaction of 2-carboxyphenoxathiin with bovine serum albumin and human serum albumin by fluorescence spectroscopy and circular dichroism[J]. Revue Roumaine De Chimie, 2010, 55 (1): 69- 77.
43 KOSHLAND D E . Correlation of structure and function in enzyme action[J]. Science, 1963, 142 (359): 1533- 1541.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[3] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[4] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27 -32 .
[6] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[7] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .
[8] WANG Li-ju,HUANG Qi-cheng,WANG Zhao-xu . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 51 -56 .
[9] SUN Guohua, WU Yaohua, LI Wei. The effect of excise tax control strategy on the supply chain system performance[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 63 -68 .
[10] SUN Dianzhu, ZHU Changzhi, LI Yanrui. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 84 -86 .