Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (2): 156-164.doi: 10.6040/j.issn.1672-3961.0.2023.284

• Mechanical Engineering • Previous Articles    

The stable motion response of floating platform based on swing arm float array

DONG Ge1, HUANG Shuting1,2, WANG Jun1, XUE Gang1,3,4, LIU Yanjun1,3,4*   

  1. DONG Ge1, HUANG Shuting1, 2, WANG Jun1, XUE Gang1, 3, 4, LIU Yanjun1, 3, 4*(1. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, Shandong, China;
    2. Shenzhen Research Institute of Shandong University, Shenzhen 518057, Guangdong, China;
    3. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China;
    4. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education(Shandong University), Jinan 250061, Shandong, China
  • Published:2025-04-15

Abstract: In order to solve the problem of safety and working performance of floating platform in complex environment sea area, the measures to improve the stability of floating platform were put forward. The swing arm float wave energy conversion device was mounted on the floating platform, a multi-body coupled hydrodynamic model of the swing arm float array and the floating platform was established, and the AQWA hydrodynamic simulation software was used to carry out numerical simulation and parametric analysis to reveal the interaction mechanism between the swing arm float array and the stability of the floating platform, and the effect of the shape and number of swing arm floats and the wave period on the stability of the floating platform were obtained, and the optimal swing arm float carrying method was found. The results showed that the floating platform equipped with swing arm float could better reduce the sloshing amplitude, and the hemispherical swing arm float could significantly reduce the pitch amplitude of the platform compared with cylindrical and conical swing arm floats. The increase of the number of swingarm float arrays would gradually reduce the shaking amplitude of the platform. In the case of a given wave height and changing the period, the floating platform equipped with swing arm floats could significantly reduce the shaking amplitude, but with the increase of the number of swing arm floats, the improvement of platform stability was less obvious. Therefore, if only the stability of the platform was considered, a small number of swing arm floats could be equipped to reduce costs, and if the wave energy device was considered to supply power to the platform, a large number of swing arm floats could be equipped to improve energy supply.

Key words: wave energy, swing-arm float array, floating platforms, wave absorption and roll reduction, AQWA simulation

CLC Number: 

  • P743
[1] SALTER H. Wave power[J]. Energy Review, 1974, 249(5459): 720-724.
[2] CLÉMENT A, MCCULLEN P, FALCAO A, et al. Wave energy in Europe: current status and perspectives[J]. Renewable and Sustainable Energy Reviews, 2002, 6(5): 405-431.
[3] THORPE W. A brief review of wave energy[R]. London, UK: A Report Produced for the UK Department of Trade and Industry, 1999.
[4] 史宏达, 王传崑. 我国海洋能技术的进展与展望[J]. 太阳能, 2017(3): 30-37. SHI Hongda, WANG Chuankun. Progress and prospect of ocean energy technology in China[J]. Solar Energy, 2017(3): 30-37.
[5] 刘延俊, 武爽, 王登帅, 等. 海洋波浪能发电装置研究进展[J].山东大学学报(工学版), 2021, 51(5): 63-75. LIU Yanjun, WU Shuang, WANG Dengshuai, et al. Research progress of ocean wave energy converters[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 63-75.
[6] 刘延俊, 贾瑞, 张健. 波浪能发电技术的研究现状与发展前景[J]. 海洋技术学报, 2016, 35(5): 100-104. LIU Yanjun, JIA Rui, ZHANG Jian. Research status and prospect of the wave power generation technology[J].Journal of Ocean Technology, 2016, 35(5): 100-104.
[7] 李明伟, 任俊卿, 赵玄烈, 等. 环形阵列波浪能装置水动力特性的数值研究[J]. 水动力学研究与进展, 2021, 36(1): 77-84. LI Mingwei, REN Junqing, ZHAO Xuanlie, et al. Numerical investigation on hydrodynamic performance of annular array of wave energy converters[J]. Chinese Journal of Hydrodynamics, 2021, 36(1): 77-84.
[8] 胡缘, 杨绍辉, 何宏舟, 等. 半潜式多浮体波浪能发电装置的水动力性能分析[J]. 水力发电学报, 2019, 38(9): 91-101. HU Yuan, YANG Shaohui, HE Hongzhou, et al. Hydrodynamic performance analysis of semi-submersible multibody wave power plant[J]. Journal of Hydroelectric Engineering, 2019, 38(9): 91-101.
[9] 刘颖昕. 高效稳定的波浪能液压PTO装置设计及控制策略研究[D]. 济南: 山东大学, 2021. LIU Yingxin. Research on design and control strategy of hydraulic power take-off for an efficient and stable wave energy converter[D]. Jinan: Shandong University, 2021.
[10] LEHMANN M, KARIMPOURA F, GOUDEYB C A, et al. Ocean wave energy in the United States: current status and future perspectives[J].Renewable and Sustainable Energy Reviews, 2017, 74: 1300-1313.
[11] 彭建军. 振荡浮子式波浪能发电装置水动力性能研究[D]. 济南: 山东大学, 2014. PENG Jianjun. Study on hydrodynamic performance for oscillating floater buoy wave energy converter[D]. Jinan: Shandong University, 2014.
[12] 平丽. 振荡浮子式波能转换装置性能的研究[D]. 大连:大连理工大学, 2005. PING Li. Investigation on the performance of the oscillating buoy wave power device[D]. Dalian: Dalian University of Technology, 2005.
[13] 路晴, 史宏达. 中国波浪能技术进展与未来趋势[J]. 海岸工程, 2022, 41(1): 1-12. LU Qing, SHI Hongda. Progress and future trend of wave energy technology in China[J]. Coastal Engineering, 2022, 41(1): 1-12.
[14] 陈坤鑫,盛松伟,张亚群,等.海工型渔业养殖网箱技术现状与发展趋势[J]. 新能源进展, 2020, 8(5): 440-446. CHEN Kunxin, SHENG Songwei, ZHANG Yaqun, et al. Technology status and development trend of ocean engineering aquaculture cage[J]. Advances in New and Renewable Energy, 2020, 8(5): 440-446.
[15] 徐杰,韩立民,张莹.我国深远海养殖的产业特征及其政策支持[J]. 中国渔业经济, 2021, 39(1): 98-107. XU Jie, HAN Limin, ZHANG Ying. Industrial characteristics and policy support of China's deep sea aquaculture[J]. Chinese Fisheries Economics, 2021, 39(1): 98-107.
[16] 王项南,张原飞,郭毅,等.潮流能和波浪能发电装置移动测试平台: 中国, CN111007331A.2020[P]. 2020-05-08.
[17] SOULARD T, BABARIT A. Numerical assessment of the mean power production of a combined wind and wave energy platform[C] // ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: OMAE, 2012: 83606.
[18] GASPAR J F M, THIEBAUT F, et al. Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions[J]. Renewable Energy, 2021, 177: 871-883.
[19] KAMARLOUEI M, GASPAR J F, CALVARIO M, et al. Experimental analysis of wave energy converters concentrically attached on a floating offshore platform[J]. Renewable Energy, 2020, 152: 1171-1185.
[20] PARK J C, WANG C M. Hydrodynamic behaviour of floating polygonal platforms under wave action[J]. Journal of Marine Science and Engineering, 2021, 9(9): 923.
[21] PECHER A, KOFOED J P, LARSEN T. Design specifications for the Hanstholm WEPTOS wave energy converter[J]. Energies, 2012, 5(4): 1001-1017.
[22] MICHAILIDES C, GAO Z, MOAN T. Experimental study of the functionality of a semisubmersible wind turbine combined with flap-typewave energy converters[J]. Renewable Energy, 2016, 93: 675-690.
[23] 廖静. 珠海“澎湖号”网箱平台:让养殖走向深远海[J]. 海洋与渔业, 2019, 307(11): 63-64. LIAO Jing. Zhuhai "Penghu" cage platform: let aquaculture to the far-reaching sea[J]. Ocean and Fishery, 2019, 307(11): 63-64.
[24] 盛松伟,王坤林,吝红军,等.集波浪能和太阳能发电于一体的半潜式深海养殖网箱: 中国, CN201610365276.9.2016[P]. 2018-09-28.
[25] CHENG Z, WEN T R, ONG M C, et al. Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept[J]. Energy, 2019, 171: 190-204.
[26] KAMARLOEI M, GASPAR J F, CALVARIO M, et al. Experimental analysis of wave energy converters concentrically attached on a floating offshore platform[J]. Renewable Energy, 2020: 1171-1185.
[27] GAO Z, WAN L, MICHAILIDES C, et al. Numerical modelling and analysis of combined concepts of floating wind turbines and wave energy converters[C] //International Conference on Offshore Renewable Energy, Glasgow, UK:[s.n.] , 2014.
[28] LEE H, POGULURI S K, BAE Y. Performance analysis of multiple wave energy converters placed on a floating platform in the frequency domain[J].Energies, 2018, 11(2): 406.
[29] BORG M, COLLU M, BRENNAN F P. Use of a wave energy converter as a motion suppression device for floating wind turbines[J]. Energy Procedia, 2013, 35: 223-233.
[30] LI L, GAO Y, YUAN Z, et al. Dynamic response and power production of a floating integrated wind wave and tidal energy system[J]. Renewable Energy, 2017, 116: 412-422.
[31] ZHU H, HU C, SUEYOSHI M, et al. Integration of a semisubmersible floating wind turbine and wave energy converters:an experimental study on motion reduction[J]. Journal of Marine Science and Technology, 2019, 25: 667-674.
[1] Yingxin LIU,Jian QIN,Yanjun LIU. The analysis of key parameters of hydraulic energy storage system of wave energy converter [J]. Journal of Shandong University(Engineering Science), 2021, 51(6): 1-8.
[2] Yanjun LIU,Shuang WU,Dengshuai WANG,Ruohong WANG. Research progress of ocean wave energy converters [J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 63-75.
[3] HUANG Shuting, ZHAI Xiaoyu, LIU Yanjun, SHI Hongda. Power capture influence of the submerged depth for the three-freedom oscillating body wave energy converter [J]. Journal of Shandong University(Engineering Science), 2020, 50(6): 17-22.
[4] Yanjun LIU, Wei WANG, Zhi CHEN, Donghai WANG, Dengshuai WANG, Gang XUE. The influence of shape parameters of wave energy device floating body on energy capture characteristics [J]. Journal of Shandong University(Engineering Science), 2020, 50(6): 1-8.
[5] WANG Shi-ming1, ZHANG Fu-xi1*, HU Qing-song1, WU Yue2. Analysis of  the water impeller hub radius of a wave power generator based on FLUENT [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 64-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[6] LAI Xiang . The global domain of attraction for a kind of MKdV equations[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 87 -92 .
[7] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[8] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[9] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[10] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .