Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (2): 156-164.doi: 10.6040/j.issn.1672-3961.0.2023.284

• Mechanical Engineering • Previous Articles    

The stable motion response of floating platform based on swing arm float array

DONG Ge1, HUANG Shuting1,2, WANG Jun1, XUE Gang1,3,4, LIU Yanjun1,3,4*   

  1. DONG Ge1, HUANG Shuting1, 2, WANG Jun1, XUE Gang1, 3, 4, LIU Yanjun1, 3, 4*(1. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, Shandong, China;
    2. Shenzhen Research Institute of Shandong University, Shenzhen 518057, Guangdong, China;
    3. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China;
    4. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education(Shandong University), Jinan 250061, Shandong, China
  • Published:2025-04-15

CLC Number: 

  • P743
[1] SALTER H. Wave power[J]. Energy Review, 1974, 249(5459): 720-724.
[2] CLÉMENT A, MCCULLEN P, FALCAO A, et al. Wave energy in Europe: current status and perspectives[J]. Renewable and Sustainable Energy Reviews, 2002, 6(5): 405-431.
[3] THORPE W. A brief review of wave energy[R]. London, UK: A Report Produced for the UK Department of Trade and Industry, 1999.
[4] 史宏达, 王传崑. 我国海洋能技术的进展与展望[J]. 太阳能, 2017(3): 30-37. SHI Hongda, WANG Chuankun. Progress and prospect of ocean energy technology in China[J]. Solar Energy, 2017(3): 30-37.
[5] 刘延俊, 武爽, 王登帅, 等. 海洋波浪能发电装置研究进展[J].山东大学学报(工学版), 2021, 51(5): 63-75. LIU Yanjun, WU Shuang, WANG Dengshuai, et al. Research progress of ocean wave energy converters[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 63-75.
[6] 刘延俊, 贾瑞, 张健. 波浪能发电技术的研究现状与发展前景[J]. 海洋技术学报, 2016, 35(5): 100-104. LIU Yanjun, JIA Rui, ZHANG Jian. Research status and prospect of the wave power generation technology[J].Journal of Ocean Technology, 2016, 35(5): 100-104.
[7] 李明伟, 任俊卿, 赵玄烈, 等. 环形阵列波浪能装置水动力特性的数值研究[J]. 水动力学研究与进展, 2021, 36(1): 77-84. LI Mingwei, REN Junqing, ZHAO Xuanlie, et al. Numerical investigation on hydrodynamic performance of annular array of wave energy converters[J]. Chinese Journal of Hydrodynamics, 2021, 36(1): 77-84.
[8] 胡缘, 杨绍辉, 何宏舟, 等. 半潜式多浮体波浪能发电装置的水动力性能分析[J]. 水力发电学报, 2019, 38(9): 91-101. HU Yuan, YANG Shaohui, HE Hongzhou, et al. Hydrodynamic performance analysis of semi-submersible multibody wave power plant[J]. Journal of Hydroelectric Engineering, 2019, 38(9): 91-101.
[9] 刘颖昕. 高效稳定的波浪能液压PTO装置设计及控制策略研究[D]. 济南: 山东大学, 2021. LIU Yingxin. Research on design and control strategy of hydraulic power take-off for an efficient and stable wave energy converter[D]. Jinan: Shandong University, 2021.
[10] LEHMANN M, KARIMPOURA F, GOUDEYB C A, et al. Ocean wave energy in the United States: current status and future perspectives[J].Renewable and Sustainable Energy Reviews, 2017, 74: 1300-1313.
[11] 彭建军. 振荡浮子式波浪能发电装置水动力性能研究[D]. 济南: 山东大学, 2014. PENG Jianjun. Study on hydrodynamic performance for oscillating floater buoy wave energy converter[D]. Jinan: Shandong University, 2014.
[12] 平丽. 振荡浮子式波能转换装置性能的研究[D]. 大连:大连理工大学, 2005. PING Li. Investigation on the performance of the oscillating buoy wave power device[D]. Dalian: Dalian University of Technology, 2005.
[13] 路晴, 史宏达. 中国波浪能技术进展与未来趋势[J]. 海岸工程, 2022, 41(1): 1-12. LU Qing, SHI Hongda. Progress and future trend of wave energy technology in China[J]. Coastal Engineering, 2022, 41(1): 1-12.
[14] 陈坤鑫,盛松伟,张亚群,等.海工型渔业养殖网箱技术现状与发展趋势[J]. 新能源进展, 2020, 8(5): 440-446. CHEN Kunxin, SHENG Songwei, ZHANG Yaqun, et al. Technology status and development trend of ocean engineering aquaculture cage[J]. Advances in New and Renewable Energy, 2020, 8(5): 440-446.
[15] 徐杰,韩立民,张莹.我国深远海养殖的产业特征及其政策支持[J]. 中国渔业经济, 2021, 39(1): 98-107. XU Jie, HAN Limin, ZHANG Ying. Industrial characteristics and policy support of China's deep sea aquaculture[J]. Chinese Fisheries Economics, 2021, 39(1): 98-107.
[16] 王项南,张原飞,郭毅,等.潮流能和波浪能发电装置移动测试平台: 中国, CN111007331A.2020[P]. 2020-05-08.
[17] SOULARD T, BABARIT A. Numerical assessment of the mean power production of a combined wind and wave energy platform[C] // ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: OMAE, 2012: 83606.
[18] GASPAR J F M, THIEBAUT F, et al. Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions[J]. Renewable Energy, 2021, 177: 871-883.
[19] KAMARLOUEI M, GASPAR J F, CALVARIO M, et al. Experimental analysis of wave energy converters concentrically attached on a floating offshore platform[J]. Renewable Energy, 2020, 152: 1171-1185.
[20] PARK J C, WANG C M. Hydrodynamic behaviour of floating polygonal platforms under wave action[J]. Journal of Marine Science and Engineering, 2021, 9(9): 923.
[21] PECHER A, KOFOED J P, LARSEN T. Design specifications for the Hanstholm WEPTOS wave energy converter[J]. Energies, 2012, 5(4): 1001-1017.
[22] MICHAILIDES C, GAO Z, MOAN T. Experimental study of the functionality of a semisubmersible wind turbine combined with flap-typewave energy converters[J]. Renewable Energy, 2016, 93: 675-690.
[23] 廖静. 珠海“澎湖号”网箱平台:让养殖走向深远海[J]. 海洋与渔业, 2019, 307(11): 63-64. LIAO Jing. Zhuhai "Penghu" cage platform: let aquaculture to the far-reaching sea[J]. Ocean and Fishery, 2019, 307(11): 63-64.
[24] 盛松伟,王坤林,吝红军,等.集波浪能和太阳能发电于一体的半潜式深海养殖网箱: 中国, CN201610365276.9.2016[P]. 2018-09-28.
[25] CHENG Z, WEN T R, ONG M C, et al. Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept[J]. Energy, 2019, 171: 190-204.
[26] KAMARLOEI M, GASPAR J F, CALVARIO M, et al. Experimental analysis of wave energy converters concentrically attached on a floating offshore platform[J]. Renewable Energy, 2020: 1171-1185.
[27] GAO Z, WAN L, MICHAILIDES C, et al. Numerical modelling and analysis of combined concepts of floating wind turbines and wave energy converters[C] //International Conference on Offshore Renewable Energy, Glasgow, UK:[s.n.] , 2014.
[28] LEE H, POGULURI S K, BAE Y. Performance analysis of multiple wave energy converters placed on a floating platform in the frequency domain[J].Energies, 2018, 11(2): 406.
[29] BORG M, COLLU M, BRENNAN F P. Use of a wave energy converter as a motion suppression device for floating wind turbines[J]. Energy Procedia, 2013, 35: 223-233.
[30] LI L, GAO Y, YUAN Z, et al. Dynamic response and power production of a floating integrated wind wave and tidal energy system[J]. Renewable Energy, 2017, 116: 412-422.
[31] ZHU H, HU C, SUEYOSHI M, et al. Integration of a semisubmersible floating wind turbine and wave energy converters:an experimental study on motion reduction[J]. Journal of Marine Science and Technology, 2019, 25: 667-674.
[1] ZHANG Tianxu, LIU Yanjun, CHEN Yun, XUE Gang, WANG Yiming. Heat transfer calculation method and experimental study on ocean thermal energy conversion flooded heat exchanger [J]. Journal of Shandong University(Engineering Science), 2024, 54(6): 167-175.
Viewed
Full text
14
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 14

  From local
  Times 14
  Rate 100%

Abstract
38
Just accepted Online first Issue
0 0 38
  From Others local
  Times 37 1
  Rate 97% 3%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!