Journal of Shandong University(Engineering Science) ›› 2023, Vol. 53 ›› Issue (4): 113-119.doi: 10.6040/j.issn.1672-3961.0.2023.077

• Electrical Engineering • Previous Articles     Next Articles

Data fitting method for electricity consumption of power market users considering behavioral characteristics

Hong YU1(),Juan DU2,Lin WEI3,*(),Li ZHANG3   

  1. 1. Jinan Power Supply Company, State Grid Shandong Electric Power Company, Jinan 250012, Shandong, China
    2. Editorial Department of the Journal of Shandong University of the Arts, Jinan 250014, Shandong, China
    3. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2023-04-24 Online:2023-08-20 Published:2023-08-18
  • Contact: Lin WEI E-mail:1524372002@qq.com;wl1243483679@163.com

Abstract:

To address the problem that the electricity consumption behavior of market-based users was complex and variable, and the laws of electricity data were difficult to be accurately characterized, a market-based user electricity data fitting method considering behavioral characteristics was proposed. The K-means clustering algorithm was used to classify the electricity consumption behavior of customers and clarify the typical characteristics of each type of customers; the neural network model based on orthogonal polynomials was constructed, in which the neural network weight coefficients were trained by gradient descent algorithm and the orthogonal polynomials were Chebyshev polynomials, Hermite polynomials, Legendre polynomials and Laguerre polynomials. The simulation analysis was carried out using the electricity data of users in Jinan, Shandong Province, and four different orthogonal polynomials were used to fit the electricity data and calculate the evaluation indexes for different categories of users, so as to summarize the most suitable fitting methods for users with different behavioral characteristics. The simulation results showed that the power data fitting effect differed significantly among different implementation methods for similar users, and the fitting accuracy of the neural network models based on Hermite polynomials and Laguerre polynomials was relatively high, but the polynomial models with the highest power data fitting accuracy for different categories of users were different. Selecting the corresponding orthogonal polynomials to form a neural network fitting model according to the type of electricity consumption behavior was an effective way to achieve accurate fitting of user electricity data.

Key words: orthogonal polynomial, neural network, curve fitting, power consumption, electricity user classification

CLC Number: 

  • TM71

Fig.1

The structure of the orthogonal polynomial feedforward neural network"

Table 1

Four types of orthogonal polynomial and recurrence equation"

正交多项式 数学表达式 递推关系式
Chebyshev多项式 Ti(x)=cos(i arccos x), x∈[-1, 1], 多项式系{Ti(x)}关于权函数$\rho(x)=\frac{1}{\sqrt{1-x^2}}$正交 T0(x)=1; T1(x)=x; …; Tk(x)=2xTk-1(x)-Tk-2(x), k=2, 3, …
Legendre多项式 $L_i(x)=\frac{1}{2^i i !} \frac{\mathrm{d}^i}{\mathrm{~d} x^i}\left(x^2-1\right)^i$, x∈[-1, 1],多项式系{Li(x)}关于权函数ρ(x)≡1正交 L0(x)=1; L1(x)=x; …; $L_k(x)=\frac{2 k-1}{k} x L_{k-1}(x)-\frac{k-1}{k} L_{k-2}(x), k=2, 3, \cdots$
Hermite多项式 $H_i(x)=(-1)^i \mathrm{e}^{x^2} \frac{\mathrm{d}^{\prime}}{\mathrm{d} x^i}\left(\mathrm{e}^{-x^2}\right), x \in(0, +\infty)$, 多项式系{Hi(x)}关于权函数ρ(x)=e-x2正交 H0(x)=1; H1(x)=2x; …; Hk(x)=2xHk-1(x)-2(k-1)Hk-2(x), k=2, 3, …
Laguerre多项式 $\Psi_i(x)=\mathrm{e}^x \frac{\mathrm{d}^i}{\mathrm{~d} x^i}\left(x^i \mathrm{e}^{-x}\right)$, x∈[0, +∞), 多项式系{Ψi(x)}关于权函数ρ(x)=e-x正交 Ψ0(x)=1; Ψ1(x)=1-x; …; Ψk(x)=(2k-1-x)Ψk-1(x)-(k-1)2Ψk-2(x), k=2, 3, …

Table 2

User classification and its characteristics"

用户类型 特点 样本数量
单峰型 用电高峰期集中于白天, 晚上负荷非常小, 日峰谷差大。此类型曲线多出现于第二产业的轻工业及第三产业的市政生活居民用户 250
避峰型 用电主要集中于夜晚, 白天用电量较低。出现此类曲线多属于第二产业的大型工业工厂等 250
波动型 实时负荷在24 h中多变, 表现在晚间与午间用电量上升, 其他时段用电量回落。此类曲线多出现于第三产业的公共设备用电等 176
双峰型 用电高峰时间多集中于白天, 出现2个时段高峰, 分别分布在9:00—12:00、14:00—18:30时段。此类曲线多出现于第三产业的餐饮业及生活服务类 281

Fig.2

Fitting results based on Hermite polynomials for electricity consumption of two-shift type power customers"

Fig.3

Fitting results and goodness of fit based on Laguerre polynomials for electricity consumption of night-shift type power customers"

Table 3

Goodness of fitting based on Hermite polynomials for electricity consumption of two-shift type power customers"

时刻 MAPE/% 时刻 MAPE/%
1:00 0.830 5 13:00 0.055 5
2:00 0.126 8 14:00 0.265 6
3:00 2.257 3 15:00 0.171 2
4:00 1.775 4 16:00 0.127 0
5:00 1.040 6 17:00 0.084 1
6:00 0.768 3 18:00 0.071 2
7:00 0.312 0 19:00 0.085 9
8:00 0.287 8 20:00 0.188 5
9:00 0.136 2 21:00 0.050 2
10:00 0.233 6 22:00 0.077 5
11:00 0.137 0 23:00 0.339 7
12:00 0.082 9 24:00 0.216 5

Table 4

Goodness of fitting based on Laguerre polynomials for electricity consumption of night-shift type power customers"

时刻 MAPE/% 时刻 MAPE/%
1:00 0.941 6 13:00 2.352 1
2:00 0.637 0 14:00 7.119 0
3:00 0.373 2 15:00 8.303 5
4:00 0.312 1 16:00 1.634 2
5:00 0.042 2 17:00 1.312 9
6:00 0.259 7 18:00 7.202 6
7:00 0.966 9 19:00 2.903 2
8:00 1.546 0 20:00 0.660 3
9:00 1.255 6 21:00 0.204 6
10:00 1.646 2 22:00 0.051 3
11:00 4.291 0 23:00 0.336 4
12:00 3.569 2 24:00 0.166 0

Table 5

Fitted evaluation index results of four orthogonal polynomial neural network models"

多项式 指标 单峰型 避峰型 波动型 双峰型
ChebyshevMAPE/% 2.104 7 1.902 2 1.120 0 2.016 7
R2 0.999 8 0.999 9 0.998 7 0.999 9
RMSE 0.003 5 0.003 6 0.003 8 0.002 4
Hermite MAPE/% 1.826 7 1.708 6 1.148 5 0.405 1
R2 0.999 9 0.999 9 0.998 7 0.999 9
RMSE 0.003 1 0.001 4 0.003 9 0.000 6
Legendre MAPE/% 2.489 9 2.405 0 1.770 3 1.952 0
R2 0.999 7 0.999 9 0.997 2 0.999 8
RMSE 0.004 3 0.002 0 0.005 6 0.003 2
Laguerre MAPE/% 2.256 5 2.003 6 0.930 7 1.600 9
R2 0.999 7 0.999 9 0.999 0 0.999 7
RMSE 0.004 5 0.002 0 0.002 1 0.005 1

Fig.4

Missing data filling of real power consumption curves for two-shift type customers"

1 郑亚先, 杨争林, 冯树海, 等. 碳达峰目标场景下全国统一电力市场关键问题分析[J]. 电网技术, 2022, 46 (1): 1- 20.
ZHENG Yaxian , YANG Zhenglin , FENG Shuhai , et al. Key issue analysis in national unified power market under target scenario of carbon emission peak[J]. Power System Technology, 2022, 46 (1): 1- 20.
2 刘宣, 唐悦, 卢继哲, 等. 基于概率预测的用电采集终端电量异常在线实时识别方法[J]. 电力系统保护与控制, 2021, 49 (19): 99- 106.
LIU Xuan , TANG Yue , LU Jizhe , et al. Online real time anomaly recognition method for power consumption of electric energy data acquisition terminal based on probability prediction[J]. Power System Protection and Control, 2021, 49 (19): 99- 106.
3 顾天奇, 张雷, 冀世军, 等. 封闭离散点的曲线拟合方法[J]. 吉林大学学报(工学版), 2015, 45 (2): 437- 441.
doi: 10.13229/j.cnki.jdxbgxb201502015
GU Tianqi , ZHANG Lei , JI Shijun , et al. Curve fitting method for closed discrete points[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45 (2): 437- 441.
doi: 10.13229/j.cnki.jdxbgxb201502015
4 崔晗, 王允, 邱丽荣, 等. 基于二次曲线拟合的共焦拉曼光谱探测方法[J]. 光谱学与光谱分析, 2016, 36 (12): 3958- 3962.
CUI Han , WANG Yun , QIU Lirong , et al. Confocal Raman spectroscopy method based on quadratic curve fitting[J]. Spectroscopy and Spectral Analysis, 2016, 36 (12): 3958- 3962.
5 阮文骏, 王蓓蓓, 李扬, 等. 峰谷分时电价下的用户响应行为研究[J]. 电网技术, 2012, 36 (7): 86- 93.
RUAN Wenjun , WANG Beibei , LI Yang , et al. Customer response behavior in time-of-use price[J]. Power System Technology, 2012, 36 (7): 86- 93.
6 杨松浩, 孟倩戎, 张宇博, 等. 基于功频特性多项式拟合的电力系统暂态频率最低点在线预测模型[J]. 中国电机工程学报, 2022, 42 (增刊1): 115- 125.
YANG Songhao , MENG Qianrong , ZHANG Yubo , et al. An online prediction model of power system frequency nadir based on polynomial fitting of power-frequency characteristics[J]. Proceedings of the CSEE, 2022, 42 (Suppl.1): 115- 125.
7 周沙, 景亮. 基于矩特征与概率神经网络的局部放电模式识别[J]. 电力系统保护与控制, 2016, 44 (3): 98- 102.
ZHOU Sha , JING Liang . Pattern recognition of partial discharge based on moment features and probabilistic neural network[J]. Power System Protection and Control, 2016, 44 (3): 98- 102.
8 MA Y , YANG J , FENG J , et al. Load data recovery method based on SOM-LSTM neural network[J]. Energy Reports, 2022, 8, 129- 136.
9 杨思明, 单征, 丁煜, 等. 深度强化学习研究综述[J]. 计算机工程, 2021, 47 (12): 19- 29.
YANG Siming , SHAN Zheng , DING Yu , et al. Survey of research on deep reinforcement learning[J]. Computer Engineering, 2021, 47 (12): 19- 29.
10 杨胡萍, 王承飞, 朱开成, 等. 基于相空间重构和Chebyshev正交基神经网络的短期负荷预测[J]. 电力系统保护与控制, 2012, 40 (24): 95- 99.
YANG Huping , WANG Chengfei , ZHU Kaicheng , et al. Short-term load forecasting based on phase space reconstruction and Chebyshev orthogonal basis neural network[J]. Power System Protection and Control, 2012, 40 (24): 95- 99.
11 ERYILMAZ S B , DUNDAR A . Understanding how orthogonality of parameters improves quantization of neural networks[J]. Institute of Electrical and Electronics Engineers (IEEE), 2022, (9): 1- 10.
12 GOVINDHARAJ A , MARIAPPAN A , AMBIKAPA-THY A , et al. Real-time implementation of adaptive neuro backstepping controller for maximum power point tracking in photo voltaic systems[J]. IEEE Access, 2021, 9, 105859- 105875.
13 SALDANA G , SAN MARTÍN J I , ZAMORA I , et al. Empirical calendar ageing model for electric vehicles and energy storage systems batteries[J]. Journal of Energy Storage, 2022, 55, 105676.
14 高元海, 王淳. 级数展开法拟合概率潮流分布函数的局限及改进[J]. 中国电机工程学报, 2021, 41 (17): 5900- 5911.
GAO Yuanhai , WANG Chun . Limitation analysis and improvement for series expansion methods to fit the distribution function of probabilistic power flow[J]. Proceedings of the CSEE, 2021, 41 (17): 5900- 5911.
15 李莎, 曾喆昭. 基于Chebyshev多项式的神经网络中长期负荷预测研究[J]. 经济数学, 2015, 32 (1): 99- 102.
LI Sha , ZENG Zhezhao . The medium and long forecasting based on Chebyshev polynomial neural-network[J]. Journal of Quantitative Economics, 2015, 32 (1): 99- 102.
16 WANG S F, WU S C, LIU T, et al. Power user classification strategy of multi view clustering[C]//Proceedings of the 2016 16th International Symposium on Communications and Information Technologies (ISCIT). Qingdao, China: IEEE, 2016: 671-675.
17 邓莎. 计及用电行为特征的负荷数据分类方法研究[D]. 沈阳: 沈阳工业大学, 2021.
DENG Sha. Power load classification method based on user behavior characteristics[D]. Shenyang: Shenyang University of Technology, 2021.
[1] Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114.
[2] DING Fei, JIANG Mingyan. Housing price prediction based on improved lion swarm algorithm and BP neural network model [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 8-16.
[3] Cuixun ZHANG,Mingjian CAO,Fengling YANG. Gas-liquid mixing in a dual grid-disc impeller stirred vessel [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 71-76, 83.
[4] YIN Xiaomin, MENG Xiangjian, HOU Kunming, CHEN Yaxiao, GAO Feng. Correction method for historical output data of photovoltaic power plant considering spatial correlation based on artificial neural network [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 118-123.
[5] LIAO Jinping, MO Yuchang, YAN Ke. Model and application of short-term electricity consumption forecast based on C-LSTM [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 90-97.
[6] HUO Bingqiang, ZHOU Tao, LU Huiling, DONG Yali, LIU Shan. Lung tumor benign-malignant classification based on multi-modal residual neural network and NRC algorithm [J]. Journal of Shandong University(Engineering Science), 2020, 50(6): 59-67.
[7] Zhiwei WANG,Nan GE,Chunwei LI. Fuzzy control of structure vibration mode based on BP neural network algorithm [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 13-19.
[8] SUN Donglei, WANG Yan, YU Yixiao, HAN Xueshan, YANG Ming, YAN Fangqing. Interval prediction of short-term regional photovoltaic power based on BP neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 70-76.
[9] Guoyong CAI,Xinhao HE,Yangyang CHU. Visual sentiment analysis based on spatial attention mechanism and convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 8-13.
[10] LIAO Nanxing, ZHOU Shibin, ZHANG Guopeng, CHENG Deqiang. Image caption generation method based on class activation mapping and attention mechanism [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 28-34.
[11] Yifei LI,Zunhua GUO. A Chirplet neural network for automatic target recognition [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 8-14.
[12] Baoming JIN,Guangyi LU,Wei WANG,Lunyue DU. Research on BP neural network rainfall runoff forecasting model based on elastic gradient descent algorithm [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 117-124.
[13] Ningning CHEN,Jianwei ZHAO,Zhenghua ZHOU. Visual tracking algorithm based on verifying networks [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 17-26.
[14] Shiqi SONG,Yan PIAO,Zexin JIANG. Vehicle classification and tracking for complex scenes based on improved YOLOv3 [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 27-33.
[15] Yanping CHEN,Li FENG,Yongbin QIN,Ruizhang HUANG. A syntactic element recognition method based on deep neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[6] LAI Xiang . The global domain of attraction for a kind of MKdV equations[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 87 -92 .
[7] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[8] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[9] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[10] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .