Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (5): 85-90.doi: 10.6040/j.issn.1672-3961.0.2019.145

• Energy and Power Engineering—Special Topic on Refrigeration Technology • Previous Articles     Next Articles

Influence of performance of direct-expansion solar-assisted heat pump system at different solar radiation intensity

Maoyuan ZHANG(),Xiangqiang KONG*(),Yimeng YANG,Xiaodong LIU   

  1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • Received:2019-04-08 Online:2019-10-20 Published:2019-10-18
  • Contact: Xiangqiang KONG E-mail:626991224@qq.com;kxqiangly@126.com
  • Supported by:
    国家自然科学基金资助项目(51776115);山东省研究生导师指导能力提升项目(SDYY17037);山东科技大学研究生导师指导能力提升计划项目(KDYC17009)

Abstract:

To analyze the effect of solar radiation intensity on direct-expansion solar-assisted heat pump system (DX-SAHP), a direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) system using variable frequency control and R134a was introduced and studied in this research. By carrying out the experiments under typical winter meteorologic conditions, the system performance and critical parameters were discussed. It revealed that the increasing solar radiation intensity made a higher superheat degree and coefficient of performance (COP), while the discharge temperature decreased with it. At similar ambient temperature, when the solar radiation intensity increased from 233 W·m-2 to 631 W·m-2, the system COP varied from 3.39 to 4.31, increased by 28.9%. Meanwhile, the solar radiation intensity had an opposite effect on the solar efficiency, which meant the higher solar radiation intensity was, the smaller collector efficiency was. Based on collector area of 2.10 m2, the solar collector efficiency decreased from 2.17 to 0.9 with the rising solar radiation intensity from 233 W·m-2 to 631 W·m-2, decreased by 58.5%.

Key words: heat pump, solar radiation intensity, superheat degree, variable frequency

CLC Number: 

  • TK11

Table 1

Specification and accuracy of measuring instruments"

传感器类型 测量参数 范围 精度
PT100铂电阻温度计 温度 -50~150 ℃ ±0.5 ℃
CYYZ11压力传感器 压力 -0.1~5 MPa 0.25%FS
TBQ-2总辐射表 太阳辐射 0~2 000 Wm-2 8.145 μV·(W·m-2) -1
TED系列功率表 电功率 220 V, 5 A 0.5%FS
FS01三杯式风速仪 环境风速 0~30 m·s-1 ±0.2 m·s -1
HSTL湿度传感器 环境湿度 0~100% 3% RH

Fig.1

Schematic diagram of a DX-SAHPWH system"

Table 2

Experimental data under winter conditions"

试验日期 天气状况 加热时间/min 环温/℃ 辐射/(W·m-2) 排气温度/℃ 过热度/℃ COP η
2017-12-27 480 7.90 233 68.75 9.69 3.39 2.17
2017-11-30 450 7.60 455 63.74 8.07 4.05 1.51
2018-01-13 440 7.18 631 66.22 15.46 4.37 0.92

Fig.2

Variations of solar radiation intensity and ambient temperature in test days"

Fig.3

Effect of solar radiation intensity on discharge temperature and superheat degree"

Fig.4

Effect of solar radiation intensity on system COP"

Fig.5

Effect of solar radiation intensity on solar collector efficiency"

1 SPORN P, ABROSE E R. The heat pump and solar energy[C]// Proceedings of the world symposium on applied solar energy. Phoenix, Ariz: IEEE, 1955.
2 KUANG Yuhui , WANG Ruzhu . Performance of a multi-functional direct-expansion solar assisted heat pump system[J]. Solar Energy, 2006, 80 (7): 795- 803.
doi: 10.1016/j.solener.2005.06.003
3 LI Yuwu , WANG Ruzhu , WU Jingyi , et al. Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater[J]. Applied Thermal Engineering, 2007, 27 (17): 2858- 2868.
4 汪坤海, 闫金州, 邢琳, 等. 直膨式太阳能热泵系统仿真[J]. 建筑节能, 2017, 45 (312): 50- 53.
WANG Kunhai , YAN Jinzhou , XING Lin , et al. Simulation of direct expansion solar assisted heat pump system[J]. Building Energy Efficiency, 2017, 45 (312): 50- 53.
5 FACAO J , CARVALHO J M . New test methodologies to analyze direct expansion solar assisted heat pumps for domestic hot water[J]. Solar Energy, 2014, 100, 66- 75.
doi: 10.1016/j.solener.2013.11.025
6 MALALI P D , CHATURVEDI S K , TAREK M A-S , et al. An approximate method for prediction of thermal performance of direct expansion solar assisted heat pump (DX-SAHP) systems for water heating applications[J]. Energy Conversion and Management, 2016, 127, 416- 423.
doi: 10.1016/j.enconman.2016.09.017
7 LUCA A , SCARPA F , VALSUANI F , et al. Direct expansion solar assisted heat pumps: a clean steady state approach for overall performance analysis[J]. Applied Thermal Engineering, 2014, 66, 216- 226.
doi: 10.1016/j.applthermaleng.2014.02.016
8 KONG Xiangqiang , ZHANG Dong , LI Ying , et al. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater[J]. Energy, 2011, 36, 6830- 6838.
9 孔祥强, 李俊枭, 杨允国, 等. R290直膨式太阳能热泵系统工质分布和迁移特性模拟[J]. 太阳能学报, 2016, 37 (10): 2585- 2592.
doi: 10.3969/j.issn.0254-0096.2016.10.020
KONG Xiangqiang , LI Junxiao , YANG Yunguo , et al. Distribution and migration characteristics simulation of working fluid R290 of direct expansion solar-assisted heat pump system[J]. Acte Energiae Solars Sinica, 2016, 37 (10): 2585- 2592.
doi: 10.3969/j.issn.0254-0096.2016.10.020
10 孔祥强, 李俊枭, 李瑛. 直膨式太阳能热泵热水器不同工质的性能分析[J]. 上海交通大学学报, 2016, 50 (4): 506- 513.
KONG Xiangqiang , LI Junxiao , LI Ying . Performance analysis of three difference refrigerants in a direct-expansion solar-assisted heat pump water heater[J]. Journal of Shanghai Jiaotong University, 2016, 50 (4): 506- 513.
11 周伟, 张小松. 太阳能热泵热水系统微细通道集热板/蒸发器性能模拟[J]. 制冷技术, 2016, 36 (5): 8- 12.
ZHOU Wei , ZHANG Xiaosong . Performance simulation of micro-channel collector/evaporator for solar heat pump water heater[J]. Chinese Journal of Refrigeration Technology, 2016, 36 (5): 8- 12.
12 肖学智, 周晓芳, 徐浩阳, 等. 低GWP制冷剂研究现状综述[J]. 制冷技术, 2014, 34 (6): 37- 42.
doi: 10.3969/j.issn.2095-4468.2014.06.201
XIAO Xuezhi , ZHOU Xiaofang , XU Haoyang , et al. An overview on the research progress of low GWP alternatives to HCFCs[J]. Chinese Journal of Refrigeration Technology, 2014, 34 (6): 37- 42.
doi: 10.3969/j.issn.2095-4468.2014.06.201
13 刘睿盈, 吴静怡, 孙晓琳. 直膨式太阳能热泵热水器集热/蒸发器流道结构分析与实验[J]. 制冷技术, 2014, 34 (2): 1- 6.
doi: 10.3969/j.issn.2095-4468.2014.02.101
LIU Ruiying , WU Jingyi , SUN Xiaolin . Analysis of collector/evaporator for direct expansion solar assisted heat pump water heater[J]. Chinese Journal of Refrigeration Technology, 2014, 34 (2): 1- 6.
doi: 10.3969/j.issn.2095-4468.2014.02.101
14 季杰, 赵方亮, 黄文竹, 等. 直膨式太阳能热泵制热性能的对比研究[J]. 太阳能学报, 2016, 37 (10): 2578- 2584.
doi: 10.3969/j.issn.0254-0096.2016.10.019
JI Jie , ZHAO Fangliang , HUANG Wenzhu , et al. Contrastive research of heating performance of direct expansion solar assisted heat pump system[J]. Acte Energiae Solars Sinica, 2016, 37 (10): 2578- 2584.
doi: 10.3969/j.issn.0254-0096.2016.10.019
15 蒋绿林, 侯亚祥, 姜钦青, 等. 辐照强度对直膨式太阳能热泵性能影响的研究[J]. 可再生能源, 2015, 33 (6): 839- 842.
JIANG Lvlin , HOU Yaxiang , JIANG Qinqing , et al. Research of irradiation intensity on the performance of a direct expansion solar assisted heat pump[J]. Renewable Energy Resources, 2015, 33 (6): 839- 842.
16 孙成龙. R290空气源热泵热水器的仿真与实验研究[D].南京:南京理工大学, 2016.
SUN Chenglong. Simulation and experiment on the character of R290 applied in air source heat pump water heater[D]. Nanjing: Nanjing University of Science & Technology Press, 2016.
[1] ZHANG Cheng-hui,PEI Rong-hui,SHI Qing-sheng,MA Yong-qing . Optimal configuration of urban water supply pump stations with variable frequency speed control [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(2): 97-102 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[2] Yue Khing Toh1, XIAO Wendong2, XIE Lihua1. Wireless sensor network for distributed target tracking: practices via real test bed development[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 50 -56 .
[3] WANG Shan,LI Tian-ze . A new method for the control of a wound-rotor induction machine[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 86 -89 .
[4] LIANG Jing-yun,WANG Ming-gang,CHAI Jia-qian,LIU yong-qing . Synthesis and in vitro antibacterial activity of 1,6-Di-(N5-phenyl-N1-diguanido) hexane dihydrochloride[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 104 -107 .
[5] SUN Yuan-Yuan, XU Yan-Liang, TAO Zhi-Ning. Analysis and calculation of the braking force for a side magnetism brake single phase induction motor[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 120 -123 .
[6] MENG Jian, LI Yibin, LI Bin. Bound gait controlling method of quadruped robot[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(3): 28 -34 .
[7] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22 -28 .
[8] LIU Yun,QIU Xiao-guo . COD determination by interpolation of the  TOC coefficient method[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(4): 108 -117 .
[9] HU Gang,FENG Xiang-Qian,CHEN Xin,CAO Li . A signal simulation method based on a wavelet neural network with an interval-accuracy of time-frequency[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 96 -100 .
[10] CUI Xin-zhuang,YAO Zhan-yong,SHANG Qing-sen . The application of dynamic compaction to the reconstruction of old road to expressway and its generalization[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 53 -56 .