Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (5): 91-97.doi: 10.6040/j.issn.1672-3961.0.2018.347
• Machine Learning & Data Mining • Previous Articles Next Articles
Ji ZHANG(),Cui JIN,Hongyuan WANG*(),Shoubing CHEN
CLC Number:
1 | ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: a benchmark[C]//IEEE International Conference on Computer Vision. Santiago, Chile: IEEE Computer Society, 2015: 1116-1124. |
2 | WANG Hongyuan , DING Zongyuan , ZHANG Ji , et al. Person reidentification by semisupervised dictionary rectification learning with retraining module[J]. Journal of Electronic Imaging, 2018, 27 (4): 043043-1- 9. |
3 | NI Tongguang , DING Zongyuan , CHEN Fuhua , et al. Relative distance metric leaning based on clustering centralization and projection vectors learning for person re-identification[J]. IEEE Access, 2018, 6 (1): 11405- 11411. |
4 | 丁宗元, 王洪元, 陈付华, 等. 基于距离中心化与投影向量学习的行人重识别[J]. 计算机研究与发展, 2017, 54 (8): 1785- 1794. |
DING Zongyuan , WANG Hongyuan , CHEN Fuhua , et al. Pedestrian weight recognition based on distance centralization and projection vector learning[J]. Computer Research and Development, 2017, 54 (8): 1785- 1794. | |
5 | WANG Hongyuan, DING Zongyuan, NI Tongguang, et al. KL divergence based person re-identification using multivariate Gaussian distributions[C]//Proceedings of the 2017 4th Asian Conference on Pattern Recognition. Nanjing, China: Sponsorship, 2017: 417-422. |
6 | 张文文, 王洪元, 万建武, 等. 基于稀疏学习的行人重识别算法[J]. 数据采集与处理, 2018, 33 (5): 855- 864. |
ZHANG Wenwen , WANG Hongyuan , WAN Jianwu , et al. Pedestrian weight recognition algorithm based on sparse learning[J]. Data Acquisition and Processing, 2018, 33 (5): 855- 864. | |
7 | NI Tongguang , GU Xiaoqing , WANG Honyuan , et al. Discirminative deep trasfer metric learning for cross-scenario person re-identification[J]. Journal of Electronic Imaging, 2018, 27 (4): 043026- 1. |
8 |
陈首兵, 王洪元, 金翠, 等. 基于孪生网络和重排序的行人重识别[J]. 计算机应用, 2018, 38 (11): 3161- 3166.
doi: 10.11772/j.issn.1001-9081.2018041223 |
CHEN Shoubing , WANG Hongyuan , JIN Cui , et al. Pedestrian weight recognition based on twin networks and reordering[J]. Computer Applications, 2018, 38 (11): 3161- 3166.
doi: 10.11772/j.issn.1001-9081.2018041223 |
|
9 | 金翠, 王洪元, 陈首兵. 基于随机擦除行人对齐网络的行人重识别方法[J]. 山东大学学报(工学版), 2018, 48 (6): 67- 73. |
JIN Cui , WANG Hongyuan , CHEN Shoubing . Pedestrian weight recognition method based on random erasure pedestrian alignment network[J]. Journal of Shandong University(Engineering Science Edition), 2018, 48 (6): 67- 73. | |
10 | DENTON E, ZAREMBA W, BRUNA J, et al. Exploiting linear structure within convolutional networks for efficient evaluation[C]//Proceedings of the Conference and Workshop on Neural Information Processing Systems. Montréal, Canada: IEEE Computer Society, 2014: 1269-1277. |
11 | ZHAO Liming, LI Xi, WANG Jingdong, et al. Deeply-learned part-aligned representations for person re-identification[C]//Proceedings of the International Conference on Computer Vision. Venice, Italy: IEEE Computer Society, 2017: 3219-3228. |
12 | ZHENG Zhedong, ZHENG Liang, YANG Yi. Pedestrian alignment network for large-scale person re-identification[J/OL].[2018-12-20]. https://arxiv.org/pdf/1707.00408.pdf. |
13 | SUN Yifan, ZHENG Liang, DENG Weijian. SVDnet for pedestrian retrieval[C]//Proceedings of the International Conference on Computer Vision. Venice, Italy: IEEE Computer Society, 2017: 3820-3828. |
14 | SU Chi, ZHANG Shiliang, XING Junliang, et al. Deep attributes driven multi-camera person re-identification[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, the Netherlands: IEEE Computer Society, 2016: 475-491. |
15 | SARFRAZ M Saquib, SCHUMANN Arne, EBERLE Andreas, et al. A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Salt Lake City, Utah: IEEE Computer Society, 2018: 420-429. |
16 | GUO Yiluan, CHEUNG Ngai-man.. Efficient and Deep person re-identification using multi-level similarity[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Salt Lake City, USA: IEEE Computer Society, 2018: 2335-2344. |
17 | HE Lingxiao, LIANG Jian, LI Haiqing, et al. Deep spatial feature reconstruction for partial person re-identification: alignment-free approach[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Salt Lake City, Utah: IEEE Computer Society, 2018: 7073-7082. |
18 | ZHONG Zhun, ZHENG Liang, CAO Donglin, et al. Re-ranking person re-identification with k-reciprocal encoding[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Honolulu, Hawaii: IEEE Computer Society, 2017: 3652-3661. |
19 | LIAO Shengcai, HU Yang, ZHU Xiangyu, et al. Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Boston, Massachusetts: IEEE Computer Society, 2015: 2197-2206. |
20 | VARIOR Rahulrama, SHUAI Bing, LU Jiwen, et al. A siamese long short-term memory architecture for human reidentification[C]//Proceedings of the European Conference on Computer Vision, . Amsterdam, the Netherlands: IEEE Computer Society, 2016: 135-153. |
21 | VARIOR Rahulrama, HALOI Mrinal, WANG Gang. Gated siamese convolutional neural network architecture for human reidentification[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, the Netherlands: IEEE Computer Society, 2016: 791-808. |
[1] | Peng WAN. Object detection of 3D point clouds based on F-PointNet [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 98-104. |
[2] | Zhixiang LIANG,Xiaoming LIU,Ying MU,Yutian LIU. Prediction method of wind power and PV ramp event based on deep learning [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 24-28. |
[3] | Yutian LIU,Runjia SUN,Hongtao WANG,Xueping GU. Review on application of artificial intelligence in power system restoration [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 1-8. |
[4] | Lizhao LI,Guoyong CAI,Jiao PAN. A microblog rumor events detection method based on C-GRU [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 102-106, 115. |
[5] | Xiaoxiong HOU,Xinzheng XU,Jiong ZHU,Yanyan GUO. Computer aided diagnosis method for breast cancer based on AlexNet and ensemble classifiers [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 74-79. |
[6] | Chengbin ZHANG,Hui ZHAO,Zongyu CAO. The vulnerability mining method for KWP2000 protocol based on deep learning and fuzzing [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 17-22. |
[7] | Cui JIN,Hongyuan WANG,Shoubing CHEN. Person re-identification based on random erasing pedestrian alignmentnetwork method [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 67-73. |
[8] | XIE Zhifeng, WU Jiaping, MA Lizhuang. Chinese financial news classification method based on convolutional neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 34-39. |
[9] | TANG Leshuang, TIAN Guohui, HUANG Bin. An object fusion recognition algorithm based on DSmT [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 50-56. |
[10] | ZHOU Funa, GAO Yulin, WANG Jiayu, WEN Chenglin. Early diagnosis and life prognosis for slowlyvarying fault based on deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 30-37. |
[11] | HE Zhengyi, ZENG Xianhua, QU Shengwei, WU Zhilong. The time series prediction model based on integrated deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 40-47. |
[12] | ZHENG Yi, ZHU Chengzhang. A prediction method of atmospheric PM2.5 based on DBNs [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 19-25. |
|