Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (3): 8-14.doi: 10.6040/j.issn.1672-3961.0.2017.417

• Machine Learning & Data Mining • Previous Articles     Next Articles

Support vector regression algorithm based on kernel similarity reduced strategy

Yingda LI(),Zongxia XIE   

  1. School of Computer Software, Tianjin University, Tianjin 300350, China
  • Received:2017-08-24 Online:2019-06-20 Published:2019-06-27
  • Supported by:
    国家基金面向大数据的粒计算理论与方法资助项目(61432011)

Abstract:

With the increase of iterations, SGD was susceptible to the curse of kernelization. We introduced the kernel similarity to remove the redundant SVs called SVs-reduced strategy (SRS) for improving the efficiency of SGD in large scale non-linear modeling. At each iteration in SGD, the similarities between a new sample and the recorded SVs were computed if the new sample was a SV. If the similarity was larger than a threshold, this SV was not saved. Experimental results on UCI, LIBSVM and Wind-speed datasets demonstrated that the proposed SRS could be used to solve large-scale non-linear SVR comparing with some state-of-the-art algorithms.

Key words: support vector regression, efficient algorithms, stochastic gradient descent, kernel similarity

CLC Number: 

  • TP181

Table 1

Properties of different datasets"

编号 数据集 实例数 训练样本数 测试样本数 属性数
1 Cadata 20 640 180 000 2 640 8
2 CASP 45 730 40 000 5 730 9
3 Cpusmall 8 192 600 000 2 192 12
4 Space_ga 3 107 250 000 607 6
5 TFIDF-2006 16 087 16 087 3 308 150 360
6 Wind-ningxia 51 840 45 000 6 840 24
7 Wind-farm 246 360 246 360 26 360 6

Table 2

MSE and SVs of different algorithms"

数据集 SVR_SRS SVR_BSGD SVR_SGD LIBSVM
Kreduce MSE #SVs MSE #SVs MSE #SVs MSE #SVs
Cadata 0.99 0.014 4 6 237 0.014 0 500 0.013 8 61 692 0.014 0 51 871
CASP 0.98 0.044 2 19 873 0.049 1 500 0.046 2 25 658 0.044 4 21 997
Cpusmall 0.99 0.002 1 836 0.002 2 500 0.002 2 5 938 0.002 3 4 314
Space_ga 0.99 0.002 2 149 0.002 3 500 0.002 3 4 749 0.001 8 3 685
TFIDF-2006 0.98 0.146 4 765 0.153 2 500 0.140 3 1 878 0.140 3 11 410
Wind-ningxia 0.97 0.490 1 10 741 0.614 6 500 0.510 2 23 154 0.470 4 35 469
Wind-farm 0.99 4.118 9 4 249 4.248 5 500 4.2 21 2 183 413 3.936 4 232 965

Table 3

Training time comparison of algorithms"

数据集 SVR_SRS SVR_BSGD SVR_SGD LIBSVM
Cadata 41.87 146.15 417.11 817.01
CASP 29.67 62.53 47.77 101.24
Cpusmall 35.53 43.58 109.11 334.76
Space_ga 5.67 17.31 24.88 33.28
TFIDF-2006 1 021.26 1 411.99 1 658.66 1 611.85
Wind-ningxia 44.95 54.42 167.73 1 258.58
Wind-farm 44.81 540.45 1 722.33 2 452.69

Fig.1

Comparison of MSE and training time evolution curves on Cadata dataset"

Fig.2

Comparison of MSE and training time evolution curves on CASP dataset"

Fig.3

Comparison of MSE and training time evolution curves on Wind-Ningxia dataset"

1 BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C]//Proceedings of the Workshop on Computational Learning Theory. Pittsburgh, PA: [s.n.], 1992: 144-152.
2 BROWN J D , SUMMERS M F , JOHNSON B A . Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression[J]. Journal of Biomolecular NMR, 2015, 63 (1): 1- 14.
doi: 10.1007/s10858-015-9981-0
3 CHEN J , XUE X , HA M , et al. Support vector regression method for wind speed prediction incorporating probability prior knowledge[J]. Mathematical Problems in Engineering, 2017, 2014 (2014): 1- 10.
4 OSUNA E, FREUND R, GIROSI F. Training support vector machines: an application to face detection[C]//Proceedings of the CVPR'97. New York, USA: IEEE, 1997: 130-136.
5 陈荣, 梁昌勇, 谢福伟. 基于SVR的非线性时间序列预测方法应用综述[J]. 合肥工业大学学报(自然科学版), 2013, 36 (3): 369- 374.
doi: 10.3969/j.issn.1003-5060.2013.03.025
6 HO C H , LIN C J . Large-scale linear support vector regression[J]. Journal of Machine Learning Research, 2012, 13 (1): 3323- 3348.
7 LIN C J, WENG R C, KEERTHI S S. Trust region Newton methods for large-scale logistic regression[C]//Proceedings of the Twenty-Fourth International Conference. Corvalis, Oregon, USA: DBLP, 2007: 561-568.
8 HSIEH C J, CHANG K W, LIN C J, et al. A dual coordinate descent method for large-scale linear SVM[C]//Proceedings of the ICML. Helsinki, Finland: [s.n.], 2008: 408-415.
9 XIE X, CHEN C, CHEN Z. Mini-batch quasi-newton optimization for large scale linear support vector regression[C]//Proceedings of the International Conference on Mechatronics, Materials, Chemistry and Computer Engineering. Chengdu, China: [s.n.], 2015.
10 WANG Y, OU G, PANG W, et al. e-Distance weighted support vector regression[C]//Proceedings of the 29th Conference on Neural Information Processing Systems (NIPS 2016). Barcelona, Spain: [s.n.], 2016.
11 KIVINEN J , SMOLA A J , WILLIAMSON R C . Online learning with kernels[J]. IEEE Transactions on Signal Processing, 2002, 52 (8): 2165- 2176.
12 SHALEV-SHWARTZ S, SINGER Y, SREBRO N. Pegasos: primal estimated sub-gradient solver for SVM[C]//Proceedings of the Twenty-Fourth ACM International Conference. Corvalis, Oregon, USA: DBLP, 2007: 807-814.
13 ZHANG T. Solving large scale linear prediction problems using stochastic gradient descent algorithms[C]//Proceedings of the International Conference on Machine Learning. Banff, Canada: Omnipress, 2004: 116.
14 BORDES A , BOTTOU L , GALLINARI P . SGD-QN: careful quasi-newton stochastic gradient descent[J]. Journal of Machine Learning Research, 2009, 10 (3): 1737- 1754.
15 WANG Z , CRAMMER K , VUCETIC S . Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training[J]. Journal of Machine Learning Research, 2012, 13 (1): 3103- 3131.
16 SMOLA A J , LKOPF B . A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14 (3): 199- 222.
doi: 10.1023/B:STCO.0000035301.49549.88
17 CRISTIANIN N , LKOPF B . Support vector machines and kernel methods: the new generation of learning machines[J]. Ai Magazine, 2002, 23 (3): 31- 41.
18 GRAF A, BORER S. Normalization in support vector machines[M]//Pattern Recognition.[S.1.]: Springer Berlin Heidelberg, 2001: 277-282.
19 CHANG C C , LIN C J . LIBSVM: a library for support vector machines[J]. Acm Transactions on Intelligent Systems & Technology, 2007, 2 (3): 27.
[1] LI Sun, WANG Chao, ZHANG Guilin, XU Zhigen, CHENG Tao, WANG Yiyuan, WANG Ruiqi. Short-term power load forecasting based on support vector regression [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 52-56.
[2] WANG Mei, ZENG Zhaohu, SUN Yingqi, YANG Erlong, SONG Kaoping. Bayesian combination of SVR on regularization path based on KNN of input [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 8-14.
[3] XU Long-qin1, LIU Shuang-yin1,2,3,4*. Water quality prediction model based on APSO-WLSSVR [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 80-86.
[4] ZHAO Yanyan, FAN Liya. The application of a multi-output support vector regression
machine in time-dependent variational inequalities
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(3): 23-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[5] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[6] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[7] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[8] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27 -32 .
[10] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .