Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (3): 8-14.doi: 10.6040/j.issn.1672-3961.0.2017.417
• Machine Learning & Data Mining • Previous Articles Next Articles
CLC Number:
1 | BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C]//Proceedings of the Workshop on Computational Learning Theory. Pittsburgh, PA: [s.n.], 1992: 144-152. |
2 |
BROWN J D , SUMMERS M F , JOHNSON B A . Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression[J]. Journal of Biomolecular NMR, 2015, 63 (1): 1- 14.
doi: 10.1007/s10858-015-9981-0 |
3 | CHEN J , XUE X , HA M , et al. Support vector regression method for wind speed prediction incorporating probability prior knowledge[J]. Mathematical Problems in Engineering, 2017, 2014 (2014): 1- 10. |
4 | OSUNA E, FREUND R, GIROSI F. Training support vector machines: an application to face detection[C]//Proceedings of the CVPR'97. New York, USA: IEEE, 1997: 130-136. |
5 |
陈荣, 梁昌勇, 谢福伟. 基于SVR的非线性时间序列预测方法应用综述[J]. 合肥工业大学学报(自然科学版), 2013, 36 (3): 369- 374.
doi: 10.3969/j.issn.1003-5060.2013.03.025 |
6 | HO C H , LIN C J . Large-scale linear support vector regression[J]. Journal of Machine Learning Research, 2012, 13 (1): 3323- 3348. |
7 | LIN C J, WENG R C, KEERTHI S S. Trust region Newton methods for large-scale logistic regression[C]//Proceedings of the Twenty-Fourth International Conference. Corvalis, Oregon, USA: DBLP, 2007: 561-568. |
8 | HSIEH C J, CHANG K W, LIN C J, et al. A dual coordinate descent method for large-scale linear SVM[C]//Proceedings of the ICML. Helsinki, Finland: [s.n.], 2008: 408-415. |
9 | XIE X, CHEN C, CHEN Z. Mini-batch quasi-newton optimization for large scale linear support vector regression[C]//Proceedings of the International Conference on Mechatronics, Materials, Chemistry and Computer Engineering. Chengdu, China: [s.n.], 2015. |
10 | WANG Y, OU G, PANG W, et al. e-Distance weighted support vector regression[C]//Proceedings of the 29th Conference on Neural Information Processing Systems (NIPS 2016). Barcelona, Spain: [s.n.], 2016. |
11 | KIVINEN J , SMOLA A J , WILLIAMSON R C . Online learning with kernels[J]. IEEE Transactions on Signal Processing, 2002, 52 (8): 2165- 2176. |
12 | SHALEV-SHWARTZ S, SINGER Y, SREBRO N. Pegasos: primal estimated sub-gradient solver for SVM[C]//Proceedings of the Twenty-Fourth ACM International Conference. Corvalis, Oregon, USA: DBLP, 2007: 807-814. |
13 | ZHANG T. Solving large scale linear prediction problems using stochastic gradient descent algorithms[C]//Proceedings of the International Conference on Machine Learning. Banff, Canada: Omnipress, 2004: 116. |
14 | BORDES A , BOTTOU L , GALLINARI P . SGD-QN: careful quasi-newton stochastic gradient descent[J]. Journal of Machine Learning Research, 2009, 10 (3): 1737- 1754. |
15 | WANG Z , CRAMMER K , VUCETIC S . Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training[J]. Journal of Machine Learning Research, 2012, 13 (1): 3103- 3131. |
16 |
SMOLA A J , LKOPF B . A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14 (3): 199- 222.
doi: 10.1023/B:STCO.0000035301.49549.88 |
17 | CRISTIANIN N , LKOPF B . Support vector machines and kernel methods: the new generation of learning machines[J]. Ai Magazine, 2002, 23 (3): 31- 41. |
18 | GRAF A, BORER S. Normalization in support vector machines[M]//Pattern Recognition.[S.1.]: Springer Berlin Heidelberg, 2001: 277-282. |
19 | CHANG C C , LIN C J . LIBSVM: a library for support vector machines[J]. Acm Transactions on Intelligent Systems & Technology, 2007, 2 (3): 27. |
[1] | LI Sun, WANG Chao, ZHANG Guilin, XU Zhigen, CHENG Tao, WANG Yiyuan, WANG Ruiqi. Short-term power load forecasting based on support vector regression [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 52-56. |
[2] | WANG Mei, ZENG Zhaohu, SUN Yingqi, YANG Erlong, SONG Kaoping. Bayesian combination of SVR on regularization path based on KNN of input [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 8-14. |
[3] | XU Long-qin1, LIU Shuang-yin1,2,3,4*. Water quality prediction model based on APSO-WLSSVR [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 80-86. |
[4] |
ZHAO Yanyan, FAN Liya.
The application of a multi-output support vector regression machine in time-dependent variational inequalities [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(3): 23-30. |
|