Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (3): 39-46.doi: 10.6040/j.issn.1672-3961.0.2018.240

• Control Science & Engineering • Previous Articles     Next Articles

Hydraulic turbine operation status detection based on LSTM network prediction

Chang CHEN(),Xiaolei LI*(),Weiyu CUI   

  1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2018-06-06 Online:2019-06-20 Published:2019-06-27
  • Contact: Xiaolei LI E-mail:sduccchenchang@163.com;qylxl@sdu.edu.cn

Abstract:

Long short-term memory (LSTM) networks was adapted to make accurate prediction of the unit's operation status. The streaming monitoring data of the turbine unit was standardized, and the sliding window technology was used to convert the data into the training data set and test data set for LSTM network training. The LSTM prediction model structure was given, and the structure of LSTM prediction model was fine-tuned, such as the number of network layers and the number of hidden layer neurons. The time series data prediction model of the hydro turbine unit was established. The experimental analysis proved that the multi-measurement-based LSTM network prediction model had higher prediction accuracy than other models, which calculated the health deviation based on the improved radar image analysis method and successfully detected the abnormality of the No. 5 hydraulic turbine unit of a hydropower plant at the end of May, and verified the validity of the model.

Key words: hydraulic turbine, data forecasting, long short-term memory networks

CLC Number: 

  • TP29

Fig.1

Structure of RNN"

Fig.2

Structure of LSTM unit"

Fig.3

5-layers network Structure of LSTM"

Fig.4

3-layers network structure of LST"

Table 1

Performance comparison of 3 and 5 layers network"

网络层数 MSE 编译时间/s 训练时间/s
5 0.026 8 0.046 0 2 007.956
3 0.072 2 0.078 0 1 131.730

Table 2

Performance comparison of the LSTM predictions"

节点数 MSE 计算时间/s
25 0.135 973.77
30 0.174 1 039.30
35 0.034 1 201.15
40 0.089 1 231.96
50 0.177 1 363.47

Table 3

Comparison of residuals based on three algorithms"

算法 残差均值 残差方差
SGD 0.136 830 0.026 786
Adagrad 0.112 304 0.026 312
RMSprop 0.119 042 0.027 368

Table 4

Data Format"

训练(测试集) 普通神经网络 RNN 一元LSTM 多元LSTM
Train_X (72220, 20) (72220, 20, 1) (72220, 20, 1) (72220, 20, 6)
Train_Y (72220, 1) (72220, 1) (72220, 1) (72220, 6)
Test_X (3800, 20) (3800, 20, 1) (3800, 20, 1) (3800, 20, 6)
Test_Y (3800, 1) (3800, 1) (3800, 1) (3800, 1)

Fig.5

Results comparison of of four prediction model"

Table 5

Comparison of MSE and MAD between unary LSTM and multi-element LSTM"

时间序列
长度
一元LSTM 多元LSTM
MSE MAD MSE MAD
5 0.057 3 0.028 5 0.022 0 0.017 0
10 0.037 7 0.019 9 0.017 1 0.008 7
15 0.038 9 0.017 6 0.005 3 0.005 6
20 0.039 8 0.012 0 0.006 8 0.008 1
25 0.044 3 0.037 4 0.011 9 0.019 2

Fig.6

Comparison of four predictive models"

Fig.7

Health deviation curve"

1 DAI H, MAO J, CAO G. High intensity concrete construction technology and management mode of large-scale hydropower project[C]//International Conference on Management and Service Science. Wuhan, China: IEEE, 2011: 1-4.
2 林道远, 林建兴. 水轮机运行稳定性的研究与展望[J]. 山东工业技术, 2018, (1): 35- 35.
LIN Daoyuan , LIN Jianxing . Research and prospect of turbine operation stability[J]. Shandong Industry Science and Technology, 2018, (1): 35- 35.
3 LI C , CHANG L , HUANG Z , et al. Parameter identification of a nonlinear model of hydraulic turbine governing system with an elastic water hammer based on a modified gravitational search algorithm[J]. Engineering Applications of Artificial Intelligence, 2016, 50 (C): 177- 191.
4 曹剑绵, 陈昌林. 大型水轮机转轮异常振动及叶片裂纹分析[J]. 西南交通大学学报, 2002, 37 (增刊1): 68- 72.
CAO Jianmian , CHEN Changlin . Analysis of abnormal vibration and blade cracks of a large hydraulic turbine Runner[J]. Journal of Southwest Jiao Tong University, 2002, 37 (Suppl.1): 68- 72.
5 郭峰, 王斌, 刘敏. 基于BP神经网络的时间序列预测研究[J]. 价值工程, 2010, 29 (35): 128- 129.
doi: 10.3969/j.issn.1006-4311.2010.35.094
GUO Feng , WANG Bin , LIU Min . Research on time series prediction based on BP neural network[J]. Value Engineering, 2010, 29 (35): 128- 129.
doi: 10.3969/j.issn.1006-4311.2010.35.094
6 文新辉. 时间序列神经网络预测方法[J]. 电子与信息学报, 1994, 16 (5): 456- 462.
WEN Xinhui . Time series neural network prediction method[J]. Journal of Electronics and Information Technology, 1994, 16 (5): 456- 462.
7 张拥军, 叶怀珍, 任民. 神经网络模型预测运输货运量[J]. 西南交通大学学报, 1999, 34 (5): 602- 605.
ZHANG Yongjun , YE Huaizhen , REN Min . Neural network model for forecasting freight transport volume[J]. Journal of Southwest Jiao Tong University, 1999, 34 (5): 602- 605.
8 林杰, 郭耀煌. 用神经网络方法预测股票短期走势[J]. 西南交通大学学报, 1998, 33 (3): 299- 304.
LIN Jie , GUO Yaohuang . Prediction of stock short-term trend using neural network[J]. Journal of Southwest Jiaotong University, 1998, 33 (3): 299- 304.
9 钟颖, 汪秉文. 基于遗传算法的BP神经网络时间序列预测模型[J]. 系统工程与电子技术, 2002, 24 (4): 9- 11.
doi: 10.3321/j.issn:1001-506X.2002.04.003
ZHONG Ying , WANG Bingwen . BP neural network time series prediction model based on genetic algorithm[J]. Systems Engineering and Electronics, 2002, 24 (4): 9- 11.
doi: 10.3321/j.issn:1001-506X.2002.04.003
10 辛治运, 顾明. 基于最小二乘支持向量机的复杂金融时间序列预测[J]. 清华大学学报(自然科学版), 2008, 48 (7): 1147- 1149.
doi: 10.3321/j.issn:1000-0054.2008.07.021
XIN Zhiyun , GU Ming . Complex financial time series prediction based on least squares support vector machine[J]. Journal of Tsinghua University(Natural Science), 2008, 48 (7): 1147- 1149.
doi: 10.3321/j.issn:1000-0054.2008.07.021
11 杨平, 彭道刚, 韩璞, 等. 神经网络预测控制算法及其应用[J]. 控制工程, 2003, 10 (4): 349- 351.
doi: 10.3969/j.issn.1671-7848.2003.04.019
YANG Ping , PENG Daogang , HAN Pu , et al. Neural network predictive control algorithm and its application[J]. Control Engineering, 2003, 10 (4): 349- 351.
doi: 10.3969/j.issn.1671-7848.2003.04.019
12 吴微, 陈维强, 刘波. 用BP神经网络预测股票市场涨跌[J]. 大连理工大学学报, 2001, 41 (1): 9- 15.
doi: 10.3321/j.issn:1000-8608.2001.01.002
WU Wei , CHEN Weiqiang , LIU Bo . Prediction of stock market ups and downs with BP neural network[J]. Journal of Dalian University of Technology, 2001, 41 (1): 9- 15.
doi: 10.3321/j.issn:1000-8608.2001.01.002
13 杨祎玥, 伏潜, 万定生. 基于深度循环神经网络的时间序列预测模型[J]. 计算机技术与发展, 2017, 27 (3): 35- 38.
YANG Yiyue , FU Qian , WAN Dingsheng . Time series prediction model based on deep circulation neural network[J]. Journal of Computer Technology and Development, 2017, 27 (3): 35- 38.
14 李洋, 董红斌. 基于CNN和BiLSTM网络特征融合的文本情感分析[J]. 计算机应用, 2018, 38 (11): 3075- 3080.
doi: 10.11772/j.issn.1001-9081.2018041289
LI Yang , DONG Hongbin . Text sentiment analysis based on feature fusion of CNN and BiLSTM networks[J]. Journal of Computer Applications, 2018, 38 (11): 3075- 3080.
doi: 10.11772/j.issn.1001-9081.2018041289
15 LE T , BUI G , DUAN Y . A multi-view recurrent neural network for 3D mesh segmentation[J]. Computers & Graphics, 2017, 66 (Secial): 103- 112.
16 PASCUAL S, BONAFONTE A. Multi-output RNN-LSTM for multiple speaker speech synthesis with α-interpolation model[C]//ISCA Speech Synthesis Workshop.[S.l.]: [s.n], 2016: 112-117.
17 陈亮, 王震, 王刚. 深度学习框架下LSTM网络在短期电力负荷预测中的应用[J]. 电力信息与通信技术, 2017, 15 (5): 8- 11.
CHEN Liang , WANG Zhen , WANG Gang . Application of LSTM network in short-term load forecasting under deep learning framework[J]. Electric Power Information and Communication Technology, 2017, 15 (5): 8- 11.
18 张清良, 李先明. 一种确定神经网络隐层节点数的新方法[J]. 吉首大学学报(自然科学版), 2002, 23 (1): 89- 91.
doi: 10.3969/j.issn.1007-2985.2002.01.024
ZHANG Qingliang , LI Xianming . A new method for determining the number of hidden layer nodes in neural networks[J]. Journal of Jishou University(Natural Science), 2002, 23 (1): 89- 91.
doi: 10.3969/j.issn.1007-2985.2002.01.024
19 蔡荣辉, 崔雨轩, 薛培静. 三层BP神经网络隐层节点数确定方法探究[J]. 电脑与信息技术, 2017, 25 (5): 29- 33.
doi: 10.3969/j.issn.1005-1228.2017.05.009
CAI Ronghui , CUI Yuxuan , XUE Peijing . Research on determining the number of hidden layer nodes of three-layer BP neural network[J]. Computer and Information Technology, 2017, 25 (5): 29- 33.
doi: 10.3969/j.issn.1005-1228.2017.05.009
20 金钊, 鲁淑霞. 非线性SGD算法改进预测超平面表示方法的研究[J]. 信息与电脑, 2016, (13): 99.
doi: 10.3969/j.issn.1003-9767.2016.13.048
JIN Zhao , LU Shuxia . Research on improved prediction of hyperplane representation by nonlinear SGD algorithm[J]. Information & Computer, 2016, (13): 99.
doi: 10.3969/j.issn.1003-9767.2016.13.048
21 贺昱曜, 李宝奇. 一种组合型的深度学习模型学习率策略[J]. 自动化学报, 2016, 42 (6): 953- 958.
HE Yuyao , LI Baoqi . A combined learning strategy for deep learning models[J]. IEEE/CAA Journal of Automatica Sinica (JAS), 2016, 42 (6): 953- 958.
22 崔广新, 李殿奎. 基于AdamOptimizer自编码的手写数字识别研究[J]. 佳木斯大学学报(自然科学版), 2018, 36 (3): 35- 38.
CUI Guangxin , LI Diankui . Research on handwritten digit recognition rased on AdamOptimizer self-encoding[J]. Journal of Jiamusi University(Natural Science Edition), 2018, 36 (3): 35- 38.
[1] Wei XUE,Dongcheng TAN,Mei ZHANG,Shilong LIU. Four-wing hyperchaotic system synchronization and its secure video communication based on FPGA [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 1-7.
[2] WANG Qi, SUN Zhumei, LIU Shaohong, BAI Jianyun. Integration transform of dust removal system based on fieldbus compatible technology [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 37-41.
[3] LIU Zhiqing, GAO Haohan, AN Molin, ZHANG Xuekai. Project schedule optimization based on critical chain method with modified completion probability [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 104-111.
[4] LIU Zhao-juan,LIU Jin-bo . A new control strategy of a tristate boost DC/DC converter based on input-output linearization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 43-47 .
[5] FANG Wei,JIANG Chang-sheng,QIAN Cheng-shan . H fuzzy tracking control of a class of uncertain nonlinear systems with time-varying delay [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 47-52 .
[6] ZANG Li-lin,JIA Lei,LIN Zhong-qin . Research of traffic signal optimized control algorithm based on fuzzy logic [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 41-45 .
[7] JI Shuai, ZHANG Chengrui, SUN Shuren, HU Tianliang. Motion control system based on real-time ethernet [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(5): 7-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[2] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[3] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27 -32 .
[4] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[5] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .
[6] WANG Li-ju,HUANG Qi-cheng,WANG Zhao-xu . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 51 -56 .
[7] SUN Dianzhu, ZHU Changzhi, LI Yanrui. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 84 -86 .
[8] YUE Yuan-Zheng. Relaxation in glasses far from equilibrium[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 1 -20 .
[9] CHENG Daizhan, LI Zhiqiang. A survey on linearization of nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 26 -36 .
[10] LI Hui-ping, ZHAO Guo-qun, ZHANG Lei, HE Lian-fang. The development status of hot stamping and quenching of ultra high-strength steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 69 -74 .