Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (3): 22-31.doi: 10.6040/j.issn.1672-3961.0.2017.418

• Machine Learning & Data Mining • Previous Articles     Next Articles

A novel double strategies evolutionary fruit fly optimization algorithm

Bo FANG1,2(),Hongmei CHEN1,2,*()   

  1. 1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, Sichuan, China
    2. Key Laboratory of Cloud Computing and Intelligent Technology (Southwest Jiaotong University), Chengdu 611756, Sichuan, China
  • Received:2017-08-24 Online:2019-06-20 Published:2019-06-27
  • Contact: Hongmei CHEN E-mail:fangbo@my.swjtu.edu.cn;hmchen@swjtu.edu.cn
  • Supported by:
    国家自然科学基金资助项目(61572406)

Abstract:

The problem of premature convergence caused by trapping into local optimum, which resulted form the fact that all the individuals were only attracted by the best one in the standard fruit fly optimization algorithm (FOA), was common. In order to overcome this demerit, a novel double strategies evolutionary fruit fly optimization algorithm (DSEFOA) was proposed. The whole group was divided into elite subgroup and ordinary subgroup dynamically based on a proposed new group partitioning strategy. Then an improved searching method with chaotic variable was used in the elite subgroup to improve the individual's local searching capability. Meanwhile, an improved standard FOA-based random searching method with weighting factors was used in the ordinary subgroup to enhance its global searching capability, as well accelerated the convergence. The searching capability of both superior and inferior individuals could be effectively improved in DSEFOA by using different strategies on different evolutionary levels of these individuals. The experimental results showed that DSEFOA had better optimization performance than the standard FOA.

Key words: fruit fly optimization algorithm, group partitioning strategy, chaotic variable, weighting factor

CLC Number: 

  • TP301.6

Table 1

8 Benchmark test functions"

函数 函数形式 搜索区间 最优值
Sphere ${f_1}(x) = \sum\limits_{i = 1}^n {x_i^2} $ [-100, 100] 0
Schwefels problem 2.22 ${f_2}(x) = \sum\limits_{i = 1}^n {\left| {{x_i}} \right|} + \prod\limits_{i = 1}^n {\left| {{x_i}} \right|} $ [-10, 10] 0
Exponential problem ${f_3}(x) = 1- \exp \left({ - 0.5\sum\limits_{i = 1}^n {x_i^2} } \right)$ [-1, 1] 0
Sum of different power ${f_4}(x) = \sum\limits_{i = 1}^n {{{\left| {{x_i}} \right|}^{i + 1}}} $ [-1, 1] 0
Rastrigin ${f_5}(x) = \sum\limits_{i = 1}^n {\left[{x_i^2- 10\cos \left({2\pi {x_i}} \right) + 10} \right]} $ [-5.12,5.12] 0
Griewank ${f_6}(x) = 1 + \frac{1}{{4000}}\sum\limits_{i = 1}^n {x_i^2} - \prod\limits_{i = 1}^n {\cos } \left({\frac{{{x_i}}}{{\sqrt i }}} \right)$ [-600, 600] 0
Diff griewank ${f_7}(x) = |\sum\limits_{i = 1}^n {{{\left[{\sin \left({{x_i}} \right)} \right]}^2}} - 0.1\prod\limits_{i = 1}^n {\exp } \left({ - x_i^2} \right) + 0.1$ [-10, 10] 0
Ackley $\begin{array}{l}{f_8}(x) = 20 + e - 20\exp \left({ - 0.2\sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {x_i^2} } } \right) - \\\; \; \; \; \; \; \; \; \; \; \; \; \exp \left[{- \frac{1}{n}\sum\limits_{i = 1}^n {\cos } \left({2\pi {x_i}} \right)} \right]\end{array}$ [-32, 32] 0

Fig.1

Relationship curves of population size and optimization mean"

Table 2

Experimental results of 4 algorithms with lower iterations"

函数 维数 算法 最优值 优化均值 标准差
] f1 30 DSEFOA 4.906 4×10-05 7.583 3×10-05 1.576 6×10-05
FOA 1.332 8×10-03 2.001 4×10-03 5.161 1×10-04
CFOA 2.769 6×10-04 3.685 5×10-04 9.093 3×10-05
PSO 0.524 8 2.523 6 1.916 6
f2 30 DSEFOA 1.876 0×10-02 2.128 1×10-02 1.719 0×10-03
FOA 0.176 2 0.218 4 2.496 4×10-02
CFOA 7.514 7×10-02 9.291 0×10-02 1.146 2×10-02
PSO 2.215 0 6.540 9 2.862 9
f3 30 DSEFOA 2.101 7×10-05 4.174 4×10-05 1.229 3×10-05
FOA 5.276 6×10-04 9.409 7×10-04 2.027 9×10-04
CFOA 1.409 1×10-04 2.136 4×10-04 5.749 3×10-05
PSO 2.923 9×10-03 1.309 6×10-02 9.455 6×10-03
f4 30 DSEFOA 6.084 6×10-04 9.523 1×10-04 2.930 3×10-04
FOA 2.595 0×10-03 4.555 1×10-03 1.609 3×10-03
CFOA 1.296 7×10-02 2.215 1×10-02 7.545 1×10-03
PSO 1.463 7×10-06 1.017 3×10-03 1.805 7×10-03
f5 30 DSEFOA 1.121 2×10-02 1.792 3×10-02 4.067 9×10-03
FOA 0.265 7 0.394 1 8.265 5×10-02
CFOA 0.143 1 0.293 3 8.938 3×10-02
PSO 36.601 0 104.530 2 34.715 6
f6 30 DSEFOA 6.140 6×10-10 1.379 0×10-09 3.207 5×10-10
FOA 8.604 7×10-06 1.32 37×10-05 2.982 0×10-06
CFOA 2.936 3×10-09 5.800 9×10-09 2.573 8×10-09
PSO 0.713 4 1.036 9 0.149 5
f7 30 DSEFOA 1.306 3×10-05 2.3402×10-05 5.3770×10-06
FOA 1.092 4×10-03 2.137 4×10-03 6.1559×10-04
CFOA 2.602 8×10-04 4.572 8×10-04 1.0832×10-04
PSO 2.191 5 4.571 0 1.478 0
f8 30 DSEFOA 7.922 2×10-04 1.031 9×10-03 1.530 3×10-04
FOA 2.856 8×10-02 3.627 5×10-02 4.780 2×10-03
CFOA 3.241 4×10-03 4.454 3×10-03 7.805 0×10-04
PSO 4.414 2 6.001 1 1.056 1

Fig.2

Optimization mean fitness evolutionary curves of test functions with lower iterations"

Table 3

Experimental results of 3 algorithms with higher iterations"

函数 维数 算法 最优值 优化均值 标准差
f1 30 DSEFOA 9.330 2×10-06 1.363 3×10-05 3.008 6×10-06
FOA 2.091 4×10-04 3.501 9×10-04 8.792 5×10-05
CFOA 3.290 5×10-05 5.741 7×10-05 1.366 6×10-05
f2 30 DSEFOA 7.266 0×10-03 8.570 6×10-03 5.729 2×10-04
FOA 7.252 9×10-02 8.982 6×10-02 1.023 5×10-02
CFOA 3.004 6×10-02 3.992 1×10-02 4.257 0×10-03
f3 30 DSEFOA 4.794 0×10-06 6.722 9×10-06 1.307 9×10-06
FOA 9.663 5×10-05 1.583 8×10-04 4.095 6×10-05
CFOA 2.058 8×10-05 3.228 9×10-05 8.965 8×10-06
f4 30 DSEFOA 1.812 1×10-04 3.712 5×10-04 1.364 7×10-04
FOA 9.584 0×10-04 1.875 9×10-03 5.559 2×10-04
CFOA 5.035 8×10-03 8.204 6×10-03 3.094 1×10-03
f5 30 DSEFOA 1.724 8×10-03 2.801 3×10-03 5.114 3×10-04
FOA 4.317 4×10-02 6.579 5×10-02 1.197 3×10-02
CFOA 2.700 4×10-02 4.679 4×10-02 1.574 7×10-02
f6 30 DSEFOA 1.304 7×10-10 2.330 6×10-10 9.277 2×10-11
FOA 5.150 0×10-06 9.087 3×10-06 1.991 0×10-06
CFOA 5.904 7×10-10 8.880 0×10-10 2.358 6×10-10
f7 30 DSEFOA 2.564 2×10-06 3.969 3×10-06 1.161 8×10-06
FOA 1.994 6×10-04 3.592 8×10-04 9.645 4×10-05
CFOA 4.327 5×10-05 7.419 0×10-05 1.858 5×10-05
f8 30 DSEFOA 3.382 7×10-04 4.384 4×10-04 6.702 1×10-05
FOA 1.061 5×10-02 1.365 9×10-02 1.635 3×10-03
CFOA 1.270 0×10-03 1.838 4×10-03 2.723 4×10-04

Fig.3

Optimization mean fitness evolutionary curve of test functions with higher iterations"

1 PAN W T . A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26 (2): 69- 74.
2 潘文超. 果蝇最佳化演算法[M]. 台中,中国: 沧海书局, 2011: 10- 12.
3 KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95: (IEEE International Conference on Neural Networks). Perth, Australia: IEEE, 1995: 1942-1948.
4 DORIGO M , MANIEZZO V , COLORNI A . Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B (Cybernetics), 1996, 26 (1): 29- 41.
doi: 10.1109/3477.484436
5 潘文超. 应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J]. 太原理工大学学报(社会科学版), 2011, 29 (4): 1- 5.
doi: 10.3969/j.issn.1009-5837.2011.04.002
PAN Wenchao . Using fruit fly optimization algorithm optimized general regression neural network to construct the operating performance of enterprises model[J]. Journal of Taiyuan University of Technology(Social Sciences Edition), 2011, 29 (4): 1- 5.
doi: 10.3969/j.issn.1009-5837.2011.04.002
6 CAO G H , WU L J . Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting[J]. Energy, 2016, 115 (1): 734- 745.
7 LI M W , GENG J , HAN D F , et al. Ship motion prediction using dynamic seasonal RvSVR with phase space reconstruction and the chaos adaptive efficient FOA[J]. Neurocomputing, 2016, 174 (3): 661- 680.
8 王欣, 杜康, 秦斌, 等. 基于果蝇优化算法的LSSVR干燥速率建模[J]. 控制工程, 2012, 19 (4): 630- 633, 638.
doi: 10.3969/j.issn.1671-7848.2012.04.021
WANG Xin , DU Kang , QIN Bin , et al. Drying rate modeling based on FOALSSVR[J]. Control Engineering of China, 2012, 19 (4): 630- 633, 638.
doi: 10.3969/j.issn.1671-7848.2012.04.021
9 ZHENG X L , WANG L , WANG S Y . A novel binary fruit fly optimization algorithm for the semiconductor final testing scheduling problem[J]. Knowledge-Based Systems, 2014, 57 (2): 95- 103.
10 韩俊英, 刘成忠. 自适应混沌果蝇优化算法[J]. 计算机应用, 2013, 33 (5): 1313- 1316, 1333.
HAN Junying , LIU Chengzhong . Adaptive chaos fruit fly optimization algorithm[J]. Journal of Computer Applications, 2013, 33 (5): 1313- 1316, 1333.
11 韩俊英, 刘成忠, 王联国, 等. 动态双子群协同进化果蝇优化算法[J]. 模式识别与人工智能, 2013, 26 (11): 1057- 1067.
doi: 10.3969/j.issn.1003-6059.2013.11.009
HAN Junying , LIU Chengzhong , WANG Lianguo , et al. Dynamic double subgroups cooperative fruit fly optimization algorithm[J]. Pattern Recognition and Artificial Intelligence, 2013, 26 (11): 1057- 1067.
doi: 10.3969/j.issn.1003-6059.2013.11.009
12 YUAN X F , DAI X S , ZHAO J Y , et al. On a novel multi-swarm fruit fly optimization algorithm and its application[J]. Applied Mathematics and Computation, 2014, 233 (3): 260- 271.
13 MITIC' M , VUKOVIC' N , PETROVIC' M , et al. Chaotic fruit fly optimization algorithm[J]. Knowledge-Based Systems, 2015, 89 (C): 446- 458.
14 韩虎. 果蝇优化算法的分析[J]. 计算机系统应用, 2017, 26 (2): 9- 17.
HAN Hu . Analysis on fruit fly optimization algorithm[J]. Computer Systems & Applications, 2017, 26 (2): 9- 17.
15 ZHANG Y W , CUI G M , WU J T , et al. A novel multi-scale cooperative mutation fruit fly optimization algorithm[J]. Knowledge-Based Systems, 2016, 114, 24- 35.
doi: 10.1016/j.knosys.2016.09.027
[1] WU Hongyan, JI Junzhong. Flower pollination algorithm-based functional module detection in protein-protein interaction networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 21-30.
[2] ZHOU Zhijie, ZHAO Fujun, HU Changhua, WANG Li, FENG Zhichao, LIU Taoyuan. Failure prognosis method based on evidential reasoning for aerospace relay [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 22-29.
[3] REN Yongfeng, DONG Xueyu. An image saliency object detection algorithm based on adaptive manifold similarity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 56-62.
[4] ZHAI Jiyou, ZHOU Jingbo, REN Yongfeng, WANG Zhijian. A visual saliency detection based on background and foreground interaction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 80-85.
[5] WU Huimin, WU Jingli. An improved cycle basis algorithm for haplotyping a diploid individual [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 9-14.
[6] WANG Lihong, LI Qiang. A selective ensemble method for traveling salesman problems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 42-48.
[7] REN Yongfeng, ZHOU Jingbo. An image saliency object detection algorithm based on information diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 1-6.
[8] WEN Zhi-qiang, ZHU Wen-qiu, HU Yong-xiang. A classification method of halftone image [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 7-12.
[9] XU Shan-shan, LIU Ying-an*, XU Sheng. The enhancement algorithm of the boundary information in stereo matching [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(6): 43-49.
[10] CHEN Ming-zhi1, 2, CHEN Jian3, XU Chun-yao3, YU Lun3, LIN Bo-gang1, 2. A new clustering algorithm for user access patterns based on network virtual environments [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 43-49.
[11] WU Tian-zhu . The blind color image watermarking algorithm based on the RBF neural networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 51-55 .
[12] ZHANG Jin-song,LI Qi-qiang,WANG Zhao-xia . Hybrid particle swarm optimization algorithm based on the chaos search [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(1): 47-50 .
[13] JIA Yin-liang,ZHANG Huan-chun,JING Ya-zhi,LIU Jing . A sixstep algorithm for line drawing [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(1): 61-64 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[2] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[3] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27 -32 .
[4] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[5] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .
[6] WANG Li-ju,HUANG Qi-cheng,WANG Zhao-xu . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 51 -56 .
[7] SUN Dianzhu, ZHU Changzhi, LI Yanrui. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 84 -86 .
[8] YUE Yuan-Zheng. Relaxation in glasses far from equilibrium[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 1 -20 .
[9] CHENG Daizhan, LI Zhiqiang. A survey on linearization of nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 26 -36 .
[10] LI Hui-ping, ZHAO Guo-qun, ZHANG Lei, HE Lian-fang. The development status of hot stamping and quenching of ultra high-strength steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 69 -74 .