Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (6): 44-55.doi: 10.6040/j.issn.1672-3961.0.2018.198
• Machine Learning & Data Mining • Previous Articles Next Articles
Yao LI(),Zhihai WANG*(),Yan′ge SUN,Wei ZHANG
CLC Number:
1 | GAMA J , ŽLIOBAITE I , BIFET A , et al. A survey on concept drift adaptation[J]. ACM Computing Surveys (CSUR), 2014, 46 (4): 44. |
2 | DIETTERICH T G. Ensemble methods in machine learning[C]//Proceedings of the International Workshop on Multiple Classifier Systems. New York, USA: ACM, 2000: 1-15. |
3 | TSYMBAL A. The problem of concept drift: definitions and related work[R]. Dublin, Ireland, Trinity College, 2004. |
4 | WEBB G I , HYDE R , CAO H , et al. Characterizing concept drift[J]. Data Mining and Knowledge Discovery, 2016, 30 (4): 964- 994. |
5 | 亓开元, 赵卓峰, 房俊, 等. 针对高速数据流的大规模数据实时处理方法[J]. 计算机学报, 2012, 35 (3): 477- 490. |
QI Kaiyuan , ZHAO Zhuofeng , FANG Jun , et al. Real-time processing for high speed data stream over lame scale data[J]. Chinese Journal of Computers, 2012, 35 (3): 477- 490. | |
6 | GAMA J . Knowledge discovery from data streams[M]. Florida, USA: CRC Press, 2010. |
7 | WANG Haixun, WEI Fan, YU P S, et al. Mining concept-drifting data streams using ensemble classifiers[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2003: 226-235. |
8 | HOMAYOUN S , AHMADZADEH M . A review on data stream classification approaches[J]. Journal of Advanced Computer Science & Technology, 2016, 5 (1): 8- 13. |
9 | STREET W N, KIM Y S. A streaming ensemble algorithm (sea) for large-scale classification[C]//Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2001: 377-382. |
10 |
SUN Yu , TANG Ke , MINKU L L , et al. Online ensemble learning of data streams with gradually evolved classes[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28 (6): 1532- 1545.
doi: 10.1109/TKDE.2016.2526675 |
11 |
BRZEZINSKI D , STEFANOWSKJ J . Reacting to different types of concept drift: The accuracy updated ensemble algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25 (1): 81- 94.
doi: 10.1109/TNNLS.2013.2251352 |
12 | BIFET A, HOLMES G, PFAHRINGER B, et al. New ensemble methods for evolving data streams[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge discovery and Data Mining. New York, USA: ACM, 2009: 139-148. |
13 |
FREUND Y , SCHAPIRE R E . A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55 (1): 119- 139.
doi: 10.1006/jcss.1997.1504 |
14 |
ELWELL R , POLIKAR R . Incremental learning of concept drift in nonstationary environments[J]. IEEE Transactions on Neural Networks, 2011, 22 (10): 1517- 1531.
doi: 10.1109/TNN.2011.2160459 |
15 |
桂林, 张玉红, 胡学钢. 一种基于混合集成方法的数据流概念漂移检测方法[J]. 计算机科学, 2012, 39 (1): 152- 155.
doi: 10.3969/j.issn.1002-137X.2012.01.034 |
GUI Lin , ZHANG Yuhong , HU Xuegang . Data stream concept drift detection method based on mixture ensemble method[J]. Computer Science, 2012, 39 (1): 152- 155.
doi: 10.3969/j.issn.1002-137X.2012.01.034 |
|
16 | 赵强利, 蒋艳凰, 卢宇彤. 具有回忆和遗忘机制的数据流挖掘模型与算法[J]. 软件学报, 2015, 26 (10): 2567- 2580. |
ZHAO Qiangli , JIANG Yanhuang , LU Yutong . Ensemble model and algorithm with recalling and forgetting mechanism for data stream mining[J]. Journal of Software, 2015, 26 (10): 2567- 2580. | |
17 | WANG S K, DAI B R. A g-means update ensemble learning approach for the imbalanced data stream with concept drifts[C]//International Conference on Big Data Analytics and Knowledge Discovery. Berlin, Germany: Springer, 2016: 255-266. |
18 | SUN YU , TANG KE , ZHU ZEXUAN , et al. Concept drift adaptation by exploiting historical knowledge[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 1- 10. |
19 | ZHANG H, SHENG Shengli. Learning weighted naive bayes with accurate ranking[C]//Proceedings of the fourth International Conference on Data Mining. New Jersey, USA: IEEE, 2004: 567-570. |
20 | HALL M . A decision tree-based attribute weighting filter for naive Bayes[J]. Knowledge-Based Systems, 2007, 20 (2): 120- 126. |
21 |
JIANG Liangxiao , LI Chaoqun , WANG Shasha , et al. Deep feature weighting for naive bayes and its application to text classification[J]. Engineering Applications of Artificial Intelligence, 2016, 52, 26- 39.
doi: 10.1016/j.engappai.2016.02.002 |
22 | GROSSMAN D, DOMINGOS P. Learning bayesian network classifiers by maximizing conditional likelihood[C]//Proceedings of the twenty-first International Conference on Machine learning. New York, USA: ACM, 2004. |
23 |
ZHU Ciyou , BYRD R H , LU Peihuang , et al. Algorithm 778: l-bfgs-b: fortran subroutines for large-scale bound-constrained optimization[J]. ACM Transactions on Mathematical Software, 1997, 23 (4): 550- 560.
doi: 10.1145/279232.279236 |
24 |
SONG Ge , YE Yunming , ZHANG Haijun , et al. Dynamic clustering forest: an ensemble framework to efficiently classify textual data stream with concept drift[J]. Information Sciences, 2016, 357, 125- 143.
doi: 10.1016/j.ins.2016.03.043 |
25 |
PIETRUCZUK L , RUTKOWSKI L , JAWORSKI M , et al. How to adjust an ensemble size in stream data mining[J]. Information Sciences, 2017, 381, 46- 54.
doi: 10.1016/j.ins.2016.10.028 |
26 | BIFET A , HOLMES G , KIRKBY R , et al. Moa: massive online analysis[J]. Journal of Machine Learning Research, 2010, 11 (50): 1601- 1604. |
27 | OZA N C , RUSSELL S . Online ensemble learning[M]. Berkeley, USA: University of California, 2001. |
28 | KOLTER J Z , MALOOF M A . Dynamic weighted majority: an ensemble method for drifting concepts[J]. Journal of Machine Learning Research, 2007, (8): 2755- 2790. |
29 | HULTEN G, SPENCER L, DOMINGOS P. Mining time-changing data streams[C]//Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2001: 97-106. |
[1] | Haigen MIN,Yukun FANG,Xia WU,Wuqi WANG. Fault diagnosis of vehicle-to-vehicle communication in networked traffic environment [J]. Journal of Shandong University(Engineering Science), 2021, 51(6): 84-92. |
[2] | YANG Xiuyuan, PENG Tao, YANG Liang, LIN Hongfei. Adaptive multi-domain sentiment analysis based on knowledge distillation [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 15-21. |
[3] | LIANG Qixing, LI Bin, LI Zhi, ZHANG Hui, RONG Xuewen, FAN Yong. Algorithm of adaptive slope adjustment of quadruped robot based on model predictive control and its application [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 37-44. |
[4] | ZHOU Kaiqing, LI Hangcheng, MO Liping. Adaptive harmony search algorithm based on global optimization [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 47-56. |
[5] | Chunrui CHENG,Beixing MAO. Adaptive sliding mode synchronization of a class of nonlinear chaotic systems [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 1-6. |
[6] | WANG Chunyan, DI Jinhong, MAO Beixing. Sliding mode synchronization of fractional-order Rucklidge systems with unknown parameters based on a new type of reaching law [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 40-45. |
[7] | Baocheng LIU,Yan PIAO,Xuemei SONG. Adaptive fusion target tracking based on joint detection [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 51-57. |
[8] | Wei YAN,Damin ZHANG,Huijuan ZHANG,Ziyun XI,Zhongyun CHEN. Improved bird swarm algorithms based on mixed decision making [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 34-43. |
[9] | Shengnan ZHANG,Lei WANG,Chunhong CHANG,Benli HAO. Image denoising based on 3D shearlet transform and BM4D [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 83-90. |
[10] | Jialin SU,Yuanzhuo WANG,Xiaolong JIN,Xueqi CHENG. Entity alignment method based on adaptive attribute selection [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 14-20. |
[11] | Xiaojie CAO,Xiaohua LI,Hui LIU. Construction expansion online for a class of nonaffine nonlinear large-scale systems [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 35-48. |
[12] | Meizhen LIU,Fengyu ZHOU,Ming LI,Yugang WANG,Ke CHEN. The composite control of backstepping control based on uncertain model compensation of wheeled mobile robot [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 36-44. |
[13] | Chuan MA,Yancheng LIU,Siyuan LIU,Qinjin ZHANG. Robust adaptive self-organizing neuro-fuzzy tracking control of UUV with unknown dead-zone nonlinearity [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 47-56. |
[14] | Jin LI,Erchao LI. Epsilon truncation algorithm based on NDX and adaptive mutation operator [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 47-53. |
[15] | Hongming LIU,Hongyan ZENG,Wei ZHOU,Tao WANG. Optimization of job shop scheduling based on improved particle swarm optimization algorithm [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 75-82. |
|