Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (6): 36-44.doi: 10.6040/j.issn.1672-3961.0.2019.236

• Control Science & Engineering - Special Topic on Robot • Previous Articles     Next Articles

The composite control of backstepping control based on uncertain model compensation of wheeled mobile robot

Meizhen LIU1(),Fengyu ZHOU1,*(),Ming LI2,Yugang WANG1,Ke CHEN1   

  1. 1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Engineering Training Center, Shandong University, Jinan 250061, Shandong, China
  • Received:2019-05-17 Online:2019-12-20 Published:2019-12-17
  • Contact: Fengyu ZHOU E-mail:mzliu94k@163.com;zhoufengyu@sdu.edu.cn
  • Supported by:
    国家重点研发计划项目(2017YFB1302400);国家自然科学基金(61773242);山东省重大科技创新工程项目(2017CXGC0926);山东省重点研发计划(公益类专项)项目(2017GGX30133)

Abstract:

Given these factors of model uncertainty, non-linearity and unmodeled dynamic characteristics existing in wheeled mobile robots, which seriously affected the stability and accuracy of trajectory tracking, a backstepping composite control strategy based on model uncertainty compensation was proposed. Based on the kinematics model of a nonholonomic wheeled mobile robot, backstepping control and Lyapunov stability criterion were adopted to design virtual velocity control quantity as continuous incentive input for trajectory tracking. Considering the model uncertainty and external bounded moment disturbance of wheeled mobile robots, the uncertainties of the system were derived from the dynamic model of wheeled mobile robots, and the moment control quantity of model was acquired by using the neural network with highly nonlinear fitting characteristics, and then adaptive law of uncertainties was obtained from Lyapunov stability analysis to realize self-adjustment and real-time trajectory tracking. The simulation results showed that the proposed composite control strategy could track the reference trajectory adaptively, and had better robustness and tracking accuracy than the single backstepping control strategy, model uncertainty compensation control strategy and PID controller.

Key words: wheeled mobile robot, nonholonomic wheeled, backstepping control, Lyapunov stability, adaptive law

CLC Number: 

  • TP24

Fig.1

The model of wheeled mobile robot"

Fig.2

The close-loop control system of wheeled mobile robot"

Fig.3

The composite control block diagram of backstepping control based on uncertain model compensation"

Table 1

The table of controllers' parameters"

控制系统 基于运动学模型控制参数 基于动力学模型控制参数 PID控制参数
c1 c2 c3 k1 k2 k3 m l KP KT KD
反演控制系统 2 2 10
不确定模型估计控制系统 20 10 4 1 0.4
复合控制系统 3 10 50 5 10 2 1 0.4
PID控制系统 60 10 50

Fig.4

The compared figure of tracking circle trajectory"

Fig.5

The compared figure of tracking error of circle trajectory at x axis"

Fig.6

The compared figure of tracking error of circle trajectory at y axis"

Fig.7

The compared figure of tracking clovertype trajectory"

Fig.8

The compared figure of tracking error of clovertype trajectory at x axis"

Fig.9

The compared figure of tracking error of clovertype trajectory at y axis"

1 DUNBALIM M , MARQUES L . Robots for environmental monitoring: significant advancements and applications[J]. Robotics & Automation Magazin, 2012, 19 (1): 24- 39.
2 BAMES M , JENTSCH F . Human-robot interactions in future military operations[M]. Burlington, USA: Ashgate Publishing Company, 2010.
3 BUALAT M, FONG T, ALLAN M, et al. Surface telerobotic: development and testing of a crew controlled planetary rover system[C]//AIAA Space Conference. San Diego, USA: American Institute of Aeronautics and Astronautics Inc, 2013.
4 丁亮.月/星球车轮地作用地面力学模型及其应用研究[D].哈尔滨:哈尔滨工业大学, 2010.
DING Liang. Study on ground mechanics model of wheel-ground interaction of moon/planet and its application[D]. Harbin: Harbin University of Technology, 2010.
5 SCHMIDT K W , BOUTAILS Y S . Fuzzy discrete event systems for multiobjective control: framework and application to mobile robot navigation[J]. Fuzzy Systems: IEEE Transactions on, 2012, 20 (5): 910- 922.
6 宋兴国.轮式机器人的移动系统建模及基于模型学习的跟踪控制研究[D].哈尔滨:哈尔滨工业大学, 2015.
SUN Xingguo. Modeling of wheeled robot's mobile system and tracking control based on model learning[D]. Harbin: Harbin University of Technology, 2015.
7 XIN Xie , WANG Qinglin , SHE Jinhua , et al. Robust adaptive tracking control of wheeled mobile robot[J]. Robotics and Autonomous Systems, 2016, 78, 36- 48.
8 ROSSOMANDO F G , SORIA C , CARELLI R . Sliding mode control for trajectory tracking of a nonholonomic mobile robot using adaptive neural networks[J]. Control Engineering & Applied Informatics, 2014, 16 (1): 12- 21.
9 AISSA Bencherif, FATIMA Chouireb. Adaptive neural fuzzy control for trajectory tracking of a wheeled mobile robot[C]//2015 4th International Conference on Electrical Engineering. Boumerdes, Algeria: Institute of Electrical and Electronics Engineers Inc, 2015.
10 SHOJAEI Khoshnam , MOHAMMAD Alireza , TARAKAMEH Ahmadreza , et al. Adaptive trajectory tracking control of a differential drive wheeled mobile robot[J]. Robotica, 2011, 29 (3): 391- 402.
11 LU Xiaochun , FEI Juntao . Velocity tracking control of wheeled mobile robots by iterative learning control[J]. International Journal of Advanced Robotic Systems, 2016, 13 (3): 1- 10.
12 陈罡, 高婷婷, 贾庆伟, 等. 带有未知参数和有界干扰的移动机器人轨迹跟踪控制[J]. 控制理论与应用, 2015, 32 (4): 491- 496.
CHEN Gang , GAO Tingting , JIA Qingwei , et al. Trajectory tracking control of mobile robots with unknown parameters and bounded disturbances[J]. Control Theory and Application, 2015, 32 (4): 491- 496.
13 朱玲, 李艳东, 孙明. 移动机器人编队的神经网络滑模控制[J]. 电机与控制学报, 2014, 18 (3): 113- 118.
ZHU Ling , LI Yandong , SUN Ming . Neural network sliding mode control for mobile robot formation[J]. Journal of Motor and Control, 2014, 18 (3): 113- 118.
14 王宗义, 李艳东, 刘涛, 等. 移动机器人的自适应模糊滑模动力学控制[J]. 哈尔滨工程大学学报, 2011, 32 (6): 792- 799.
WANG Zongyi , LI Yandong , LIU Tao , et al. Adaptive fuzzy sliding mode dynamics control for mobile robots[J]. Journal of Harbin University of Engineering, 2011, 32 (6): 792- 799.
15 HWANG E , KANG H , HYUN C , et al. Robust backstepping control based on a Lyapunov redesign for skid-steered wheeled mobile robots[J]. International Journal of Advanced Robotic Systems, 2013, 10 (26): 1- 8.
16 HOU Z G , ZOU A M , CHENG L , et al. Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach[J]. Control Systems Technology: IEEE Transactions on, 2009, 17 (4): 803- 815.
17 CHWA D . Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances[J]. Fuzzy Systems: IEEE Transactions on, 2012, 20 (3): 587- 593.
18 DONG W , KUHNERT K D . Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties[J]. Robotics: IEEE Transactions on, 2005, 21 (2): 261- 266.
19 沈智鹏, 张晓玲. 带扰动补偿的移动机器人轨迹跟踪反演控制[J]. 控制工程, 2019, 26 (3): 398- 404.
SHEN Zhipeng , ZHANG Xiaoling . Backstepping control for trajectory tracking of mobile robots with disturbance compensation[J]. Control Engineering, 2019, 26 (3): 398- 404.
20 吴卫国, 陈辉堂, 王月娟. 移动机器人的全局轨迹跟踪控制[J]. 自动化学报, 2001, 27 (3): 326- 331.
WU Weiguo , CHEN Huitang , WANG Yuejuan . Global trajectory tracking control of mobile robots[J]. Journal of Automation, 2001, 27 (3): 326- 331.
21 ZHOU Yang, ZHOU Fengyu, WANG Da, et al. Path-tracking of mobile robot using feedback-aided P-type iterative learning control against initial state error[C]//2017 IEEE 6th Data Driven Control and Learning Systems Conference. Chongqing, China: IEEE, 2017: 587-592.
22 JIANG Z P , NIJMEUJER H . Tracking control of mobile robots: a case study in backstepping[J]. Automatica, 1997, 33 (7): 1393- 1399.
23 郑大钟. 线性系统理论[M]. 北京: 清华大学出版社, 2002.
24 FENG G . A compensation scheme for robot tracking based on neural networks[J]. Robotics and Autonomous Systems, 1995, 15, 100- 206.
25 MARY A D , MATHEW A T , JACOB J . Robust H-infinity: stabilization of uncertain wheeled mobile robots[J]. Global Journal of Researches in Engineering Electrical and Electronics Engineering, 2012, 12 (1): 22- 31.
26 WANG Xiaojing , LIU Meizhen , CHEN Shuai , et al. PID-PFC control of continuous rotary electro-hydraulic servo motor applied to simulator[J]. The Journal of Engineering, 2019, 13, 138- 143.
[1] ZHANG Yuting, LI Wang, WANG Chenguang, LIU Youquan, SHI Hongjun. Synchronization of time-delayed complex dynamical networks with discontinuous coupling [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 43-49.
[2] JIA Dandan, WEI Airong. Stabilization analysis for dissipative hamilton control systems with actuator saturation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(5): 20-28.
[3] ZHAO Zhan-shan1,2, ZHANG Jing3, SUN Lian-kun, DING Gang1. Design of self-adaptive sliding mode controller with finite time convergence [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 74-78.
[4] DENG Xiu-cheng,SHEN Yan-jun,FANG Sheng-le .

An approach to design the finite-time observer for MIMO-linear systems

[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 17-21 .
[5] LI Yan-fang,LIU Yun-gang . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 76-81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Kai,SUN Feng-zhong,ZHAO Yuan-bin,GAO Ming,GAO Shan . Mathematical model and numerical simulation of the air inlet flowfield of a natural-draft cooling tower[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 13 -17 .
[2] MA Qi-Hua, WANG Yi-Tai. Application of the high density resistivity method to surrvey huge empty water  outside of a coal mine[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 107 -111 .
[3] HAN Xue. Example analysis for landslide hazard remote monitoring at  the Pingzhuang west open-pit mine[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 116 -120 .
[4] CHOU Wu-Sheng, WANG Shuo. Study on the adaptive algorithm of the force reflection robotic master under large stiffness of the environment[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(1): 1 -5 .
[5] LI Li-ping,LI Shu-cai,XU Bang-shu,DING Wan-tao,WEI Li-yuan . Numerical optimization study on the construction of subsea tunnel
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 63 -68 .
[6] HUANG Jinchao. A new method for muti-objects image segmentation based on faster region proposal networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 20 -26 .
[7] LIN Xin-Yuan, ZHANG Feng. Analysis of the cause of bursting cracks in the bottom slab of a continuous rigid bridge based on the mixed finite element method[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(6): 125 -129 .
[8] LIU Hai-chun,XIE Shao-jun,WANG Guo-feng . A novel hybrid current control method applied in threephase four leg APF[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(6): 10 -14 .
[9] REN Xiao-Hua, CUI Zhao-Jie. Study on extracting/ reverse extracting dephenol of gasified high-concentration phenol-containing wastewater[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(1): 93 -97 .
[10] ZHANG Long-yun,CAO Sheng-le . The application and improvement of matterelement extension method used in water quality assessment of Yellow River[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(6): 91 -94 .