Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (5): 77-84.doi: 10.6040/j.issn.1672-3961.0.2018.191

• Control Science & Engineering • Previous Articles     Next Articles

Lung tumor images recognition based on PSO-ConvK convolutional neural network

Mengmeng LIANG1(),Tao ZHOU1,2,*(),Yong XIA3,Feifei ZHANG1,Jian YANG1   

  1. 1. School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, Ningxia, China
    2. School of Science, Ningxia Medical University, Yinchuan 750004, Ningxia, China
    3. School of Computer Science, Northwestern Polytechnical University, Xi′an 710072, Shaanxi, China
  • Received:2018-05-31 Online:2018-10-01 Published:2018-05-31
  • Contact: Tao ZHOU E-mail:1020881411@qq.com;zhoutaonxmu@126.com
  • Supported by:
    国家自然科学基金资助项目(61561040);陕西省教育厅资助项目(2013JK1142)

Abstract:

In order to solve problems that convolution kernel was random initialization and the gradient descent method to train convolution neural network was easy to fall into local minimum, an image recognition method based on particle swarm optimization for convolution kernel was proposed. CNN(convolution neural network) was constructed by using the parameter migration method, and convolution kernel was extracted. The particle swarm algorithm was used to update the velocity and position of particles constantly and find the global optimal value to initialize convolution kernels. Convolution kernels were transferred to convolution neural network, and lung tumor images were used to train them. CNN model was trained by lung tumor images, and gradient descent method was used to modify network weights, hence global optimization ability of PSO algorithm was combined with local search ability of gradient descent method. The experiments verified effectiveness of method through three perspectives: batch sizes, iteration numbers, and network layer numbers. The particle swarm algorithm was compared with gauss function. The recognition rates of PSO optimized convolution kernel were always higher than that of randomized convolution kernel and gauss convolution kernel, its recognition rate reached 98.3%, which had certain feasibility and superiority.

Key words: PSO, convolution kernel, convolutional neural network, lung tumor, medical images

CLC Number: 

  • TP183

Fig.1

Convolutional neural network structure"

Fig.2

Algorithm framework"

Fig.3

Flow chart of PSO combined with Gradient descent method"

Fig.4

Pre-processed experimental data"

Table 1

Comparison of recognition rate and sensitivity of PSO optimized convolution kernel with iteration number"

迭代次数 随机化卷积核 高斯卷积核 PSO优化一层卷积核 PSO优化两层卷积核
训练时间/s 识别率/% 灵敏度/% 训练时间/s 识别率/% 灵敏度/% 训练时间/s 识别率/% 灵敏度/% 训练时间/s 识别率/% 灵敏度/%
30 2 558.22 93.10 97.60 2 545.03 95.00 96.00 2 562.22 94.90 99.00 2 570.00 95.50 97.00
40 3 408.20 93.30 98.40 3 395.23 95.60 96.00 3 411.77 95.60 97.40 3 406.02 95.80 97.40
50 4 265.31 94.00 98.40 4 235.45 96.00 97.40 4 273.44 95.80 97.20 4 257.02 96.50 97.80
60 5 116.59 94.90 97.00 5 094.44 96.20 96.80 5 124.09 95.90 96.40 5 109.05 96.70 96.80
70 5 975.69 95.30 96.00 5 963.13 96.40 97.20 6 001.06 96.50 97.20 5 933.23 97.00 99.00

Table 2

Comparison of specificity, MCC and F1Score of PSO optimized convolution kernel with iteration times"

迭代次数 随机化卷积核 高斯卷积核 PSO优化一层卷积核 PSO优化两层卷积核
特异度/% MCC F1Score 特异度/% MCC F1Score 特异度/% MCC F1Score 特异度/% MCC F1Score
30 88.60 0.87 0.93 94.00 0.90 0.95 90.80 0.90 0.95 94.00 0.91 0.96
40 88.20 0.87 0.93 95.20 0.91 0.96 93.80 0.91 0.96 94.20 0.92 0.96
50 89.60 0.88 0.94 94.60 0.92 0.96 94.40 0.92 0.96 95.20 0.93 0.97
60 92.80 0.90 0.95 95.60 0.92 0.96 95.40 0.92 0.96 96.60 0.93 0.97
70 94.60 0.91 0.95 95.60 0.93 0.96 95.80 0.93 0.97 95.00 0.94 0.97

Table 3

Comparison of recognition rate and sensitivity of PSO optimized convolution kernel with batch sizes"

批次大小 随机化卷积核 高斯卷积核 PSO优化一层卷积核 PSO优化两层卷积核
训练时间/s 识别率/% 灵敏度/% 训练时间/s 识别率/% 灵敏度/% 训练时间/s 识别率/% 灵敏度/% 训练时间/s 识别率/% 灵敏度/%
50 3 404.27 94.40 97.40 3 420.74 95.30 97.20 3 549.56 95.00 97.80 3 608.60 96.10 97.00
100 3 321.73 91.40 99.20 3 329.66 93.10 98.20 3 428.76 92.50 93.20 3 569.05 94.30 98.00
150 3 297.91 90.40 97.60 3 298.88 92.80 97.40 3 324.80 91.10 96.60 3 455.64 93.00 93.00
200 3 199.72 89.10 99.40 3 186.80 90.50 98.60 3 251.77 89.50 100.00 3 358.09 91.60 95.00

Table 4

Comparison of specificity, MCC and F1Score of PSO optimized convolution kernel with batch sizes"

批次大小 随机化卷积核 高斯卷积核 PSO优化一层卷积核 PSO优化两层卷积核
特异度/% MCC F1Score 特异度/% MCC F1Score 特异度/% MCC F1Score 特异度/% MCC F1Score
50 91.40 0.89 0.94 93.40 0.91 0.95 92.20 0.90 0.95 95.00 0.92 0.96
100 83.60 0.84 0.91 88.00 0.87 0.93 91.80 0.85 0.93 90.00 0.89 0.94
150 83.20 0.82 0.90 88.20 0.86 0.93 85.60 0.83 0.91 93.00 0.86 0.93
200 78.80 0.80 0.89 82.40 0.82 0.90 79.00 0.81 0.89 88.00 0.83 0.92

Table 5

Comparison of recognition rate of PSO optimized convolution kernel with network layers"

网络层数 随机化卷积核 高斯卷积核 PSO一卷积核 PSO两卷积核 PSO三卷积核 PSO四卷积核
训练时间/s 识别率/% 训练时间/s 识别率/% 训练时间/s 识别率/% 训练时间/s 识别率/% 训练时间/s 识别率/% 训练时间/s 识别率/%
5 3 909.86 92.40 3 901.33 94.60 3 926.79 95.20 4 017.86 96.10
6 4 414.08 93.90 4 232.13 95.00 4 453.02 95.80 4 477.57 96.50 4 496.98 97.00
7 4 471.54 94.20 4 566.62 95.50 4 497.06 96.30 4 507.26 97.20 4 523.96 97.70
8 4 526.35 95.80 4 647.58 96.80 4 545.81 96.70 4 577.11 97.60 4 774.98 98.00 5 6491.26 98.30

Table 6

Comparison of sensitivity and specificity of PSO optimized convolution kernel with network layers"

网络层数 随机化卷积核 高斯卷积核 PSO一卷积核 PSO两卷积核 PSO三卷积核 PSO四卷积核
灵敏度/% 特异度/% 灵敏度/% 特异度/% 灵敏度/% 特异度/% 灵敏度/% 特异度/% 灵敏度/% 特异度/% 灵敏度/% 特异度/%
5 89.40 95.40 99.20 90.00 98.40 92.00 96.80 95.40
6 99.40 88.40 93.60 96.40 98.60 93.00 96.00 97.00 98.20 95.80
7 92.20 96.20 96.40 94.60 99.80 92.80 98.00 96.40 99.00 96.40
8 94.80 96.80 99.00 94.40 98.40 95.00 98.00 97.20 98.60 97.40 100.00 96.60

Table 7

Comparison of MCC and F1Score of PSO optimized convolution kernel with network layers"

网络层数 随机化卷积核 高斯卷积核 PSO一卷积核 PSO两卷积核 PSO三卷积核 PSO四卷积核
MCC F1Score MCC F1Score MCC F1Score MCC F1Score MCC F1Score MCC F1Score
5 0.85 0.92 0.90 0.95 0.91 0.95 0.92 0.96
6 0.88 0.94 0.90 0.95 0.92 0.96 0.93 0.97 0.94 0.97
7 0.88 0.94 0.91 0.96 0.93 0.96 0.94 0.97 0.95 0.98
8 0.92 0.96 0.94 0.97 0.93 0.97 0.95 0.98 0.96 0.98 0.97 0.98
1 陈万青, 郑荣寿, 张思维, 等. 2012年中国恶性肿瘤发病和死亡分析[J]. 中国肿瘤, 2016, 25 (1): 1- 8.
doi: 10.3969/j.issn.1674-4136.2016.01.001
CHEN Wanqing , ZHENG Rongshou , ZHANG Siwei , et al. Analysis of the incidence and death of malignant tumors in China in 2012[J]. Bulletin of China, 2016, 25 (1): 1- 8.
doi: 10.3969/j.issn.1674-4136.2016.01.001
2 张忠凤, 张春. 多层螺旋CT对肺癌的诊断价值[J]. 实用临床医学, 2016, 17 (1): 53- 54.
ZHANG Zhongfeng , ZHANG Chun . Multi-slice spiral CT in diagnosis of lung cancer[J]. Practical Clinical Medicine, 2016, 17 (1): 53- 54.
3 常亮, 邓小明, 周明全, 等. 图像理解中的卷积神经网络[J]. 自动化学报, 2016, 42 (9): 1300- 1312.
CHANG Liang , DENG Xiaoming , ZHOU Mingquan , et al. Convolutional neural networks in image understanding[J]. Acta Automatica Sinica, 2016, 42 (9): 1300- 1312.
4 HU Hong , PANG Liang , SHI Zhongzhi . Image matting in the perception granular deep learning[J]. Knowledge-Based Systems, 2016, 102, 51- 63.
doi: 10.1016/j.knosys.2016.03.018
5 余萍, 赵继生. 基于矩阵2-范数池化的卷积神经网络图像识别算法[J]. 图学学报, 2016, 39 (5): 694- 701.
YU Ping , ZHAO Jisheng . Convolution neural network image recognition algorithm based on matrix 2-norm pooling[J]. Journal of Graphics, 2016, 39 (5): 694- 701.
6 GRINBLAT Guillermo , UZAL Lucas , LARESE Mónica , et al. Deep learning for plant identification using vein morphological patterns[J]. Computers & Electronics in Agriculture, 2016, 127, 418- 424.
7 ISLAM Jyoti, ZHANG Yanqing. Visual sentiment analysis for social images using transfer learning approach[C]// Processdings of IEEE International Conferences on Big Data and Cloud Computing. Washington, USA: IEEE, 2016: 124-130.
8 ZHAO Wenzhi , DU Shihong . Learning multiscale and deep representations for classifying remotely sensed imagery[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2016, 113, 155- 165.
9 GAO X W , HUI R , Tian Z . Classification of CT brain images based on deep learning networks[J]. Computer Methods & Programs in Biomedicine, 2017, 138, 49- 56.
10 CHEN Jie, QI Xianbiao, TERVONEN O, et al. Thorax disease diagnosis using deep convolutional neural network[C] // Processdings of Engineering in Medicine and Biology Society. Ottawa, Canada: IEEE, 2016: 2287- 2290.
11 MISHRA Manish, SCHMITT Sabine, WANG Lichao, et al. Structure-based assessment of cancerous mitochondria using deep networks[C]// Processdings of IEEE, International Symposium on Biomedical Imaging. Prague, Czech Republic: IEEE, 2016: 545-548.
12 王媛媛, 周涛, 陆惠玲, 等. 基于集成卷积神经网络的肺部肿瘤计算机辅助诊断模型[J]. 生物医学工程学杂志, 2017, 34 (4): 543- 551.
WANG Yuanyuan , ZHOU Tao , LU Huiling , et al. Computer-aided diagnosis model of lung cancer based on integrated convolutional neural network[J]. Journal of biomedical engineering, 2017, 34 (4): 543- 551.
13 赵志刚, 林玉娇, 尹兆远. 基于自适应惯性权重的均值粒子群优化算法[J]. 计算机工程与科学, 2016, 38 (3): 501- 506.
doi: 10.3969/j.issn.1007-130X.2016.03.016
ZHAO Zhigang , LIN Yujiao , YIN Zhaoyuan . A mean particle swarm optimization algorithm based on adaptive inertia weight[J]. Computer Engineering & Science, 2016, 38 (3): 501- 506.
doi: 10.3969/j.issn.1007-130X.2016.03.016
14 LAN Zhenzhong , YU Shooul , LIN Ming , et al. Handcrafted local features are convolutional neural networks[J]. Computer Science, 2015, (3): 92411- 92419.
15 OH Beonseok , OH Kangrok . A gabor-based network for heterogeneous face recognition[J]. Neurocomputing, 2017, 261, 253- 265.
doi: 10.1016/j.neucom.2015.11.137
16 BALASARASWATHI M , KALPANA B . Fast and effective classification using parallel and multi-start PSO[J]. Journal of Information Technology Research, 2018, 11 (2): 13- 30.
doi: 10.4018/JITR
17 YE Fei . Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data[J]. Plos One, 2017, 12 (12): 152- 188.
18 王媛媛.基于卷积神经网络的肺部肿瘤PET/CT计算机辅助诊断研究[D].宁夏医科大学, 2017.
WANG Yuanyuan. Computer aided diagnosis of lung tumors PET/CT based on convolution neural network[D]. Ningxia Medical University, 2017.
19 CHEN Junwen , LIU Zhigang , WANG Hongrui , et al. Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network[J]. IEEE Transactions on Instrumentation & Measurement, 2018, (99): 1- 13.
20 ZHOU Honglu , SONG Mingli , PEDRYCZ Witold . A comparative study of improved GA and PSO in solving multiple traveling salesmen problem[J]. Applied Soft Computing, 2018, 64, 564- 580.
doi: 10.1016/j.asoc.2017.12.031
[1] Pu ZHANG,Chang LIU,Yong WANG. Suggestion sentence classification model based on feature fusion and ensemble learning [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 47-54.
[2] LI Yuxin, PU Yuanyuan, XU Dan, QIAN Wenhua, LIU Hejuan. Image aesthetic quality evaluation based on embedded fine-tune deep CNN [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 60-66.
[3] HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95.
[4] XIE Zhifeng, WU Jiaping, MA Lizhuang. Chinese financial news classification method based on convolutional neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 34-39.
[5] ZHAO Yanxia, WANG Xizhao. Multipurpose zero watermarking algorithm for color image based on SVD and DCNN [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 25-33.
[6] SONG Zhengqiang, YANG Huiling, XIAO Dan. Current and speed controllers driven by IPMSM based on online particle swarm optimization method [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 112-116.
[7] MA Hanjie, LIN Xia, XU Xiaohui, ZHANG Jian, ZHANG Zhisheng. Load optimization model of smart home management system based on adaptive particle swarm optimization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 57-62.
[8] YAO Yu, FENG Jian, ZHANG Huaguang, HAN Kezhen. Weighted hyper-ellipsoidal support vector data description with negative samples for outlier detection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 195-202.
[9] ZHAO Kang, WANG Chunyi, YANG Dong, LIU Yutian. Short circuit current limiting optimization of ultra-high voltage receiving-end power grid [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 117-124.
[10] XU Shan-shan, LIU Ying-an*, XU Sheng. Wood defects recognition based on the convolutional neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(2): 23-28.
[11] WANG Xiu-hong,GUO Qing-qiang,LI Qi-qiang . Highorder cumulant adaptive filter based on particle swarm optimization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(6): 15-19 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22 -28 .
[2] HUANG Jinchao. A new method for muti-objects image segmentation based on faster region proposal networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 20 -26 .
[3] TANG Qingshun, JIN Lu, LI Guodong, WU Chunfu. Robotic manipulators tracking control based on adaptive terminal sliding mode controller[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 45 -53 .
[4] ZHANG Jianming, LIU Quansheng, TANG Zhicheng, ZHAN Ting, JIANG Yalong. New peak shear strength criterion with inclusion of shear action history[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 77 -81 .
[5] XIAO Qiao, PEI Jihong, WANG Lixia, GONG Zhicheng. Ship detection in remote sensing image based on the fuzzy fusion of multi-channel Gabor filtering[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 29 -35 .
[6] MA Xiangming, SUN Xia, ZHANG Qiang. Construction and analysis on typical working cycle of wheel loader[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 82 -87 .
[7] LIANG Zehua, CUI Yaodong, ZHANG Yu. The one-dimensional cutting stock problem with sequence-dependent cut losses[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 75 -80 .
[8] WU Shufang, XU Jianmin. Evaluation of microblog users' credibility based on HITS algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 7 -12 .
[9] DAI Shiyu, LIU Shuqin. Estimation of speed and acceleration of the Maglev platform by state observer[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 114 -120 .
[10] ZHONG Zhiyan, WEN Zhiqiang, ZHANG Xiaoyun, YE Degang. Neighborhood similarity descriptor used in halftone image[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 58 -64 .