Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (5): 85-90.doi: 10.6040/j.issn.1672-3961.0.2018.139

• Control Science & Engineering • Previous Articles     Next Articles

Two methods for sliding mode synchronization of five-dimensional fractional-order chaotic systems with entanglement iterms

Dongxiao WANG()   

  1. College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450046, Henan, China
  • Received:2018-04-04 Online:2018-10-01 Published:2018-04-04
  • Supported by:
    国家自然科学青年基金资助项目(NSFC11501525)

Abstract:

Sliding mode synchronization of five-dimensional fractional-order chaotic systems with three entanglement iterms was studied based on classical and integral sliding mode methods. Sliding mode surfaces and controllers were designed in two methods and two sufficient conditions were arrived for entanglement chaotic systems to acquire sliding mode synchronization. The research conclusion illustrated that five-dimensional fractional-order entanglement chaotic systems were sliding mode synchronization under certain conditions. Numerical simulation showed the correctness and the effectiveness of the designed controller.

Key words: fractional-order, entanglement chaos, sliding mode, integral sliding mode, synchronization

CLC Number: 

  • O482.4

Fig.1

Chaotic attractor of systems (1)"

Fig.2

System error curves of theorem1"

Fig.3

System error curves of theorem2"

1 MOHAMMAD P A . Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory[J]. Journal of Computation and Nonlinear Dynamics, 2012, 7 (2): 1011- 1015.
2 MILAD Mohadeszadeh , HADI Delavari . Synchronization of fractional order hyper-chaotic systems based on a new adaptive sliding mode control[J]. Int J Dynam Control, 2015, 10 (7): 435- 446.
3 WANG X , HE Y . Projective synchronization of fractional order chaotic system based on linear separation[J]. Phys Lett A, 2007, 372 (4): 435- 441.
4 BHAT S P , BERNSTEIN D S . Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control Signals and Systems, 2005, 17 (2): 101- 127.
doi: 10.1007/s00498-005-0151-x
5 毛北行, 李巧利. 基于一种新型趋近律的分数阶Duffling不确定系统的自适应滑模同步[J]. 中山大学学报(自然科学版), 2017, 56 (4): 64- 67.
MAO Beixing , LI Qiaoli . Self-adaptive sliding mode synchronization of fractional-order duffling systems based on a new reaching law[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2017, 56 (4): 64- 67.
6 马珍珍, 肖剑, 杨叶红. 一类具有二次项的新分数阶Mavpd混沌系统[J]. 武汉大学学报(工学版), 2014, 47 (2): 276- 285.
MA Zhenzhen , XIAO Jian , YANG Yehong . A type of fractional-order chaotic systems with quadratic term[J]. Engineering Journal of Wuhan University, 2014, 47 (2): 276- 285.
7 毛北行, 李巧利. 一类分数阶Genesio-Tesi系统的滑模混沌同步[J]. 中山大学学报(自然科学版), 2017, 56 (2): 76- 79.
MAO Beixing , LI Qiaoli . Sliding mode chaos synchronization of a class of fractional-order Genesio-Tesi systems[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2017, 56 (2): 76- 79.
8 毛北行, 孟晓玲. 具有死区输入的分数阶多涡卷混沌系统的有限时间同步[J]. 浙江大学学报(理学版), 2017, 44 (3): 302- 306.
MAO Beixing , MENG Xiaoling . Finite-time synchronization of fractional-order multi-scroll systems with dead-zone input[J]. Journal of Zhejiang University(Science Edition), 2017, 44 (3): 302- 306.
9 仲启龙, 邵永辉, 郑永爱. 分数阶混沌系统的主动滑模同步[J]. 动力学与控制学报, 2015, 13 (1): 18- 22.
ZHONG Qilong , SHAO Yonghui , ZHENG Yongai . Forwardly sliding mode synchronization of the fractional order chaotic systems[J]. Journal of Dynamics and Control, 2015, 13 (1): 18- 22.
10 徐瑞萍, 高明美. 自适应终端滑模控制不确定混沌系统的同步[J]. 控制工程, 2016, 23 (5): 715- 719.
XU Ruiping , GAO Mingmei . Synchronization of chaotic susyems with uncertainty using adaptive terminal sliding mode controller[J]. Control Engineering of China, 2016, 23 (5): 715- 719.
11 侯瑞茵, 李俨, 侯明善. 比例积分追踪制导方法研究[J]. 西北工业大学学报, 2014, 32 (2): 303- 308.
doi: 10.3969/j.issn.1000-2758.2014.02.027
HOU Ruiyin , LI Yan , HOU Minghsan . A Proportional plus integral pursuit guidance law[J]. Journal of Northwestern Polytechnical University, 2014, 32 (2): 303- 308.
doi: 10.3969/j.issn.1000-2758.2014.02.027
12 徐瑞萍, 高明美, 刘振. 一个系混沌系统的滑模控制[J]. 青岛大学学报(自然科学版), 2012, 25 (3): 26- 29.
doi: 10.3969/j.issn.1006-1037.2012.08.007
XU Ruiping , GAO Mingmei , LIU Zhen . Sliding mode control of a new chaos system[J]. Journal of Qingdao University(Natural Science Edition), 2012, 25 (3): 26- 29.
doi: 10.3969/j.issn.1006-1037.2012.08.007
13 马广富, 于彦波, 李波, 等. 基于积分滑模的航天器有限时间姿态容错控制[J]. 控制理论与应用, 2017, 34 (8): 1028- 1034.
MA Guangfu , YU Yanbo , LI Bo , et al. Integral-type sliding mode finite-time fault tolerant control for spacecraft attitude control[J]. Control Theory and Applications, 2017, 34 (8): 1028- 1034.
14 ZHANG Hongtao , LIU Xinzhi . Chaos entanglement: a new approach to generate chaos[J]. International Journal of Bifurcation and Chaos, 2013, 23 (5): 1330- 1411.
15 杨敏, 俞建宁, 张建刚, 等. 一个新构造混沌纠缠系统的动力学分析[J]. 山东理工大学学报(自然科学版), 2014, 28 (1): 16- 23.
YANG Min , YU Jianning , ZHANG Jiangang , et al. Dynamical analysis of a new chaos entanglement system[J]. Journal of Shandong University of Technology (Natural Science Edition), 2014, 28 (1): 16- 23.
16 付海燕, 雷腾飞, 臧红岩, 等. 一类具有三个纠缠项的五维混沌系统的构建与仿真分析[J]. 东莞理工学院学报, 2018, 25 (1): 18- 25.
FU Haiyan , LEI Tengfei , ZANG Hongyan , et al. Construction and simulation analysis of five-dimensional chaotic system with three entanglement iterms[J]. Journal of Dongguan University of Technology, 2018, 25 (10): 18- 25.
17 PODLUBNY L . Fractional differential equations[M]. San Diego, CA, USA: Academic Press, 1999.
18 梅生伟, 申铁龙, 刘志康. 现代鲁棒控制理论与应用[M]. 北京: 清华大学出版社, 2003.
[1] Chunyan WANG,Jinhong DI. Synchronization control of fractional-order multi-scroll chaotic system based on reduced-order method [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 91-94, 123.
[2] MAO Beixing. Ratio integral sliding mode synchronization control of entanglement chaotic systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 50-54.
[3] MENG Xiaoling, WANG Jianjun. Chaos synchronization of a class of fractional-order coronary artery systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 55-60.
[4] MAO Beixing, CHENG Chunrui. Self-adaptive sliding mode control of fractional-order Victor-Carmen chaotic systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 31-36.
[5] ZHANG Yuting, LI Wang, WANG Chenguang, LIU Youquan, SHI Hongjun. Synchronization of time-delayed complex dynamical networks with discontinuous coupling [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 43-49.
[6] LI Wang, MA Zhicai, SHI Hongjun. Finite-time stochastic generalized outer synchronization of time-delayed complex dynamical networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 1-8.
[7] LI Qingbin, WANG Xiaodong. Terminal sliding model control chaos synchronization of fractional-order emotion mode systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 84-88.
[8] MAO Beixing, WANG Dongxiao. Sliding model chaos synchronization control of a class of fractional-order multi-scroll systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 79-83.
[9] LIANG Qiushi, ZHAO Zhicheng. A position sensorless control strategy for BLDCM based on a fractional order sliding mode observer [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 96-101.
[10] TANG Qingshun, JIN Lu, LI Guodong, WU Chunfu. Robotic manipulators tracking control based on adaptive terminal sliding mode controller [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 45-53.
[11] LIU Xiangjie, HAN Yaozhen. Multi-machine power system excitation control based on continuous higher-order sliding mode [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 64-71.
[12] SUN Meimei, HU Yun'an, WEI Jianming. Synchronization of multiwing hyperchaotic systems via adaptive sliding mode control [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 45-51.
[13] JI Shuai, ZHANG Chengrui, SUN Shuren, HU Tianliang. Motion control system based on real-time ethernet [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(5): 7-13.
[14] XIE Jing, KAO Yonggui, GAO Cunchen, ZHANG Mengqiao. Integral sliding mode control for uncertain stochastic singular Markovian jump systems with time-varying delays [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(4): 31-38.
[15] LI Wang1,2, SHI Yong2, MA Ji-wei2. Finite-time outer synchronization of complex dynamical networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(2): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22 -28 .
[2] HUANG Jinchao. A new method for muti-objects image segmentation based on faster region proposal networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 20 -26 .
[3] TANG Qingshun, JIN Lu, LI Guodong, WU Chunfu. Robotic manipulators tracking control based on adaptive terminal sliding mode controller[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 45 -53 .
[4] ZHANG Jianming, LIU Quansheng, TANG Zhicheng, ZHAN Ting, JIANG Yalong. New peak shear strength criterion with inclusion of shear action history[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 77 -81 .
[5] XIAO Qiao, PEI Jihong, WANG Lixia, GONG Zhicheng. Ship detection in remote sensing image based on the fuzzy fusion of multi-channel Gabor filtering[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 29 -35 .
[6] MA Xiangming, SUN Xia, ZHANG Qiang. Construction and analysis on typical working cycle of wheel loader[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 82 -87 .
[7] LIANG Zehua, CUI Yaodong, ZHANG Yu. The one-dimensional cutting stock problem with sequence-dependent cut losses[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 75 -80 .
[8] WU Shufang, XU Jianmin. Evaluation of microblog users' credibility based on HITS algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 7 -12 .
[9] DAI Shiyu, LIU Shuqin. Estimation of speed and acceleration of the Maglev platform by state observer[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 114 -120 .
[10] ZHONG Zhiyan, WEN Zhiqiang, ZHANG Xiaoyun, YE Degang. Neighborhood similarity descriptor used in halftone image[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 58 -64 .