JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2018, Vol. 48 ›› Issue (4): 55-60.doi: 10.6040/j.issn.1672-3961.0.2016.463

Previous Articles     Next Articles

Chaos synchronization of a class of fractional-order coronary artery systems

MENG Xiaoling, WANG Jianjun   

  1. College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, Henan, China
  • Received:2016-12-13 Online:2018-08-20 Published:2016-12-13

Abstract: The problem of chaos synchronization for a class of fractional-order coronary artery systems was studied based on Lyapunov stability theory and fractional-order calculus. Three sufficient conditions were arrived that the fractional order systems was chaos synchronized under appropriate controller. The research conclusion illustrated that systems was chaos synchronization under proper conditions.

Key words: fractional-order systems, coronary artery, sliding mode, chaos synchronization

CLC Number: 

  • O482.4
[1] YASSEN M T. Controlling chaos and synchronization for new chaotic system using linear feedback control[J]. Chaos, Solition & Fractals, 2005, 26(3):913-920.
[2] CHEN M, CHEN W. Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems[J]. Chaos, Solition & Fractals, 2009, 41(5):2716-2724.
[3] PECORA L M, CAROLL T L. Synchronization in chaotic systems[J]. Physics Review Letters, 1990, 64(8):821-824.
[4] WU X J, LU H T. Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters[J]. Chaos, Solition & Fractals, 2011, 44(10):820-810.
[5] SALARIEH H, ALASTY A. Adaptive synchronization of two chaotic systems with stochastic unknown parameters[J].Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2):508-519.
[6] SUN Y P, LI J M, WANG J A, et al. Generalized projective synchronization of chaotic systems via adaptive learing control[J]. Chinese Physics B, 2010, 19(2):502-505.
[7] YANG L, YANG J. Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(6):2405-2413.
[8] AGHABABA M P, AKBARI M E. A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances[J]. Applied Mathematics and Computation, 2012, 218(9):5757-5768.
[9] AGHABABA M P, HEYDARI A. Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities[J]. Applied Mathematical Modlling, 2012, 36(4):1639-1652.
[10] LIU P, LIU S. Robust adaptive full state hybrid synchronization of chaotic complex systems with unkown parameters and external disturbances[J]. Nonlinear Dynamics, 2012, 70(1):585-599.
[11] 毛北行. 两类分数阶系统的观测器同步[J].吉林大学学报(理学版),2017,55(1):139-144. MAO Beixing. Observer synchronization of two kinds of fractional-order systems[J]. Journal of Jiling University(Science Edition), 2017, 55(1):139-144.
[12] 毛北行,李巧利.一类分数阶Genesio-Tesi系统分的滑模混沌同步[J]. 中山大学学报(自然科学版),2017,56(2):76-79. MAO Beixing, LI Qiaoli. Sliding mode chaos synchronization of a class of fractional-order Genesio-Tesi systems[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2017, 56(2):76-79.
[13] 孙宁,张化光,王智良. 不确定分数阶混沌系统的滑模投影同步[J].浙江大学学报(工学版),2010,44(7):1288-1291. SUN Ning, ZHANG Huaguang, WANG Zhiliang. Projective synchronization of uncertain fractional order chaotic system using sliding mod econtroller[J]. Journal of Zhejiang University(Engineering Science), 2010, 44(7):1288-1291.
[14] 仲启龙,邵永辉,郑永爱. 分数阶混沌系统的主动滑模同步[J].动力学与控制学报,2015,13(1):18-22. ZHONG Qilong, SHAO Yonghui, ZHENG Yongai. Synchronization of the fractional order chaotic systems based on TS models[J]. Journal of Dynanics and Control, 2015,13(1):18-22.
[15] XI Huiling, YU Simin, ZHANG Ruixia, et al. Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems[J]. Optik Optics, 2014(125):2036-2040.
[16] TRAN Xuan Toa, KANG Hee Jun. Robust adaptive chatter-free finite-time control method for chaos control and(anti-)synchronization of uncertain(hyper)chaotic systems[J]. Nolinear Dynamics, 2015(80):637-651.
[17] 贡崇颖,李医民,孙曦浩.肌型血管生物数学模型的自适应Backstepping控制设计[J].生物数学学报,2007,22(3):503-508. GONG Chongying, LI Yimin, SUN Xihao. Adaptive Backstepping control of the biomathematical model of muscular blood vessel[J]. Journal of Biomathematics, 2007, 22(3):503-508.
[18] 赵占山,张静,丁刚,等. 冠状动脉系统高阶滑模自适应混沌同步设计[J].物理学报,2015,64(21):5081-5088. ZHAO Zhanshan, ZHANG Jing, DING Gang, et al. Self-adaptive slding mode chaos synchronization of high-order coronary artery systems[J]. Acta Phyis, 2015, 64(21):5081-5088.
[19] POD LUBN Y. Fractional differential equation[M]. San Diego, CA, USA: Academic Press, 1999.
[20] HILFER R. Applications of fractional calculus in physics[M]. Singapore: World Scientific York, 2000.
[21] SRIVASTAVA H, OWA S. Univalent functions, fractional calculus and their applications[M]. New Jersey, USA: Prentice hall, 1989.
[1] MENG Xiaoling, MAO Beixing. Sliding mode synchronization of fractional-order T chaotic systems with logarithmic [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 7-12.
[2] Chunrui CHENG,Beixing MAO. Adaptive sliding mode synchronization of a class of nonlinear chaotic systems [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 1-6.
[3] CHENG Chunrui. Three control schemes of chaos synchronization for fractional-order Brussel system [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 46-51.
[4] WANG Chunyan, DI Jinhong, MAO Beixing. Sliding mode synchronization of fractional-order Rucklidge systems with unknown parameters based on a new type of reaching law [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 40-45.
[5] Chuan MA,Yancheng LIU,Siyuan LIU,Qinjin ZHANG. Robust adaptive self-organizing neuro-fuzzy tracking control of UUV with unknown dead-zone nonlinearity [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 47-56.
[6] Dongxiao WANG. Two methods for sliding mode synchronization of five-dimensional fractional-order chaotic systems with entanglement iterms [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 85-90.
[7] MAO Beixing. Ratio integral sliding mode synchronization control of entanglement chaotic systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 50-54.
[8] MAO Beixing, CHENG Chunrui. Self-adaptive sliding mode control of fractional-order Victor-Carmen chaotic systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 31-36.
[9] MAO Beixing, WANG Dongxiao. Sliding model chaos synchronization control of a class of fractional-order multi-scroll systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 79-83.
[10] LIANG Qiushi, ZHAO Zhicheng. A position sensorless control strategy for BLDCM based on a fractional order sliding mode observer [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 96-101.
[11] LI Qingbin, WANG Xiaodong. Terminal sliding model control chaos synchronization of fractional-order emotion mode systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 84-88.
[12] TANG Qingshun, JIN Lu, LI Guodong, WU Chunfu. Robotic manipulators tracking control based on adaptive terminal sliding mode controller [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 45-53.
[13] LIU Xiangjie, HAN Yaozhen. Multi-machine power system excitation control based on continuous higher-order sliding mode [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 64-71.
[14] SUN Meimei, HU Yun'an, WEI Jianming. Synchronization of multiwing hyperchaotic systems via adaptive sliding mode control [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 45-51.
[15] XIE Jing, KAO Yonggui, GAO Cunchen, ZHANG Mengqiao. Integral sliding mode control for uncertain stochastic singular Markovian jump systems with time-varying delays [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(4): 31-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TUN Shi-Lin, XIAO Shu-An. Theoretical and applied case of seismic imaging in tunnel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 96 -100 .
[2] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(4): 65 -69 .
[3] . CAO Dayong1,PENG Haihua2,XU Yang2,QIAO Tiejun3,GAO Wen4[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 112 -115 .
[4] ZHANG Xin,LI Shu-cai,LI Shu-chen . Back analysis of initial geostress and its application considering the effect of crude seepage field[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 57 -62 .
[5] SHI Lai-shun,DONG Yan-yan,LI Yan-yan,LI Wen-jing . The catalytic oxidation of simulated wastewater containing eriochrome black T with chlorine dioxide as an oxidant[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 113 -117 .
[6] NIU Lin, ZHAO Jian-Guo, LI Ke-Jun. Study of a power frequency magnetic field of 1000kVUHV AC  transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(1): 154 -158 .
[7] ZHANG Dao-qiang. Knowledge preserving embedding[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(2): 1 -10 .
[8] , . Study On Non-Destructive Evaluation of Multilayered Urea Reactors[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(4): 0 -0 .
[9] FENG Zhi-yu . Study on desurphurization and denitrification of the absorptive catalyst from lignite[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(1): 107 -110 .
[10] SHANG Fang, LIU Yun-Gang, ZHANG Cheng-Hui. Disturbance attenuation by output feedback fora class of uncertain nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(1): 19 -27 .