JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2018, Vol. 48 ›› Issue (4): 55-60.doi: 10.6040/j.issn.1672-3961.0.2016.463
Previous Articles Next Articles
MENG Xiaoling, WANG Jianjun
CLC Number:
[1] | YASSEN M T. Controlling chaos and synchronization for new chaotic system using linear feedback control[J]. Chaos, Solition & Fractals, 2005, 26(3):913-920. |
[2] | CHEN M, CHEN W. Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems[J]. Chaos, Solition & Fractals, 2009, 41(5):2716-2724. |
[3] | PECORA L M, CAROLL T L. Synchronization in chaotic systems[J]. Physics Review Letters, 1990, 64(8):821-824. |
[4] | WU X J, LU H T. Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters[J]. Chaos, Solition & Fractals, 2011, 44(10):820-810. |
[5] | SALARIEH H, ALASTY A. Adaptive synchronization of two chaotic systems with stochastic unknown parameters[J].Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2):508-519. |
[6] | SUN Y P, LI J M, WANG J A, et al. Generalized projective synchronization of chaotic systems via adaptive learing control[J]. Chinese Physics B, 2010, 19(2):502-505. |
[7] | YANG L, YANG J. Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(6):2405-2413. |
[8] | AGHABABA M P, AKBARI M E. A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances[J]. Applied Mathematics and Computation, 2012, 218(9):5757-5768. |
[9] | AGHABABA M P, HEYDARI A. Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities[J]. Applied Mathematical Modlling, 2012, 36(4):1639-1652. |
[10] | LIU P, LIU S. Robust adaptive full state hybrid synchronization of chaotic complex systems with unkown parameters and external disturbances[J]. Nonlinear Dynamics, 2012, 70(1):585-599. |
[11] | 毛北行. 两类分数阶系统的观测器同步[J].吉林大学学报(理学版),2017,55(1):139-144. MAO Beixing. Observer synchronization of two kinds of fractional-order systems[J]. Journal of Jiling University(Science Edition), 2017, 55(1):139-144. |
[12] | 毛北行,李巧利.一类分数阶Genesio-Tesi系统分的滑模混沌同步[J]. 中山大学学报(自然科学版),2017,56(2):76-79. MAO Beixing, LI Qiaoli. Sliding mode chaos synchronization of a class of fractional-order Genesio-Tesi systems[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2017, 56(2):76-79. |
[13] | 孙宁,张化光,王智良. 不确定分数阶混沌系统的滑模投影同步[J].浙江大学学报(工学版),2010,44(7):1288-1291. SUN Ning, ZHANG Huaguang, WANG Zhiliang. Projective synchronization of uncertain fractional order chaotic system using sliding mod econtroller[J]. Journal of Zhejiang University(Engineering Science), 2010, 44(7):1288-1291. |
[14] | 仲启龙,邵永辉,郑永爱. 分数阶混沌系统的主动滑模同步[J].动力学与控制学报,2015,13(1):18-22. ZHONG Qilong, SHAO Yonghui, ZHENG Yongai. Synchronization of the fractional order chaotic systems based on TS models[J]. Journal of Dynanics and Control, 2015,13(1):18-22. |
[15] | XI Huiling, YU Simin, ZHANG Ruixia, et al. Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems[J]. Optik Optics, 2014(125):2036-2040. |
[16] | TRAN Xuan Toa, KANG Hee Jun. Robust adaptive chatter-free finite-time control method for chaos control and(anti-)synchronization of uncertain(hyper)chaotic systems[J]. Nolinear Dynamics, 2015(80):637-651. |
[17] | 贡崇颖,李医民,孙曦浩.肌型血管生物数学模型的自适应Backstepping控制设计[J].生物数学学报,2007,22(3):503-508. GONG Chongying, LI Yimin, SUN Xihao. Adaptive Backstepping control of the biomathematical model of muscular blood vessel[J]. Journal of Biomathematics, 2007, 22(3):503-508. |
[18] | 赵占山,张静,丁刚,等. 冠状动脉系统高阶滑模自适应混沌同步设计[J].物理学报,2015,64(21):5081-5088. ZHAO Zhanshan, ZHANG Jing, DING Gang, et al. Self-adaptive slding mode chaos synchronization of high-order coronary artery systems[J]. Acta Phyis, 2015, 64(21):5081-5088. |
[19] | POD LUBN Y. Fractional differential equation[M]. San Diego, CA, USA: Academic Press, 1999. |
[20] | HILFER R. Applications of fractional calculus in physics[M]. Singapore: World Scientific York, 2000. |
[21] | SRIVASTAVA H, OWA S. Univalent functions, fractional calculus and their applications[M]. New Jersey, USA: Prentice hall, 1989. |
[1] | MENG Xiaoling, MAO Beixing. Sliding mode synchronization of fractional-order T chaotic systems with logarithmic [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 7-12. |
[2] | Chunrui CHENG,Beixing MAO. Adaptive sliding mode synchronization of a class of nonlinear chaotic systems [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 1-6. |
[3] | CHENG Chunrui. Three control schemes of chaos synchronization for fractional-order Brussel system [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 46-51. |
[4] | WANG Chunyan, DI Jinhong, MAO Beixing. Sliding mode synchronization of fractional-order Rucklidge systems with unknown parameters based on a new type of reaching law [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 40-45. |
[5] | Chuan MA,Yancheng LIU,Siyuan LIU,Qinjin ZHANG. Robust adaptive self-organizing neuro-fuzzy tracking control of UUV with unknown dead-zone nonlinearity [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 47-56. |
[6] | Dongxiao WANG. Two methods for sliding mode synchronization of five-dimensional fractional-order chaotic systems with entanglement iterms [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 85-90. |
[7] | MAO Beixing. Ratio integral sliding mode synchronization control of entanglement chaotic systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 50-54. |
[8] | MAO Beixing, CHENG Chunrui. Self-adaptive sliding mode control of fractional-order Victor-Carmen chaotic systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 31-36. |
[9] | MAO Beixing, WANG Dongxiao. Sliding model chaos synchronization control of a class of fractional-order multi-scroll systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 79-83. |
[10] | LIANG Qiushi, ZHAO Zhicheng. A position sensorless control strategy for BLDCM based on a fractional order sliding mode observer [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 96-101. |
[11] | LI Qingbin, WANG Xiaodong. Terminal sliding model control chaos synchronization of fractional-order emotion mode systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 84-88. |
[12] | TANG Qingshun, JIN Lu, LI Guodong, WU Chunfu. Robotic manipulators tracking control based on adaptive terminal sliding mode controller [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 45-53. |
[13] | LIU Xiangjie, HAN Yaozhen. Multi-machine power system excitation control based on continuous higher-order sliding mode [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 64-71. |
[14] | SUN Meimei, HU Yun'an, WEI Jianming. Synchronization of multiwing hyperchaotic systems via adaptive sliding mode control [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 45-51. |
[15] | XIE Jing, KAO Yonggui, GAO Cunchen, ZHANG Mengqiao. Integral sliding mode control for uncertain stochastic singular Markovian jump systems with time-varying delays [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(4): 31-38. |
|