JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2016, Vol. 46 ›› Issue (6): 40-47.doi: 10.6040/j.issn.1672-3961.1.2016.213
Previous Articles Next Articles
HE Zhengyi1,2, ZENG Xianhua1,2*, QU Shengwei1,2, WU Zhilong1
CLC Number:
[1] TAYLOR G W, HINTON G E, ROWEIS S T. Modeling human motion using binary latent variables[C] // Advances in Neural Information Processing Systems(NIPS 19): Proceedings of the 2006 Conference. [S.l.] : MIT Press, 2007: 1345-1352. [2] TAYLOR G W, HINTON G E, ROWEIS S T. Two distributed-state models for generating high-dimensional time series[J]. Journal of Machine Learning Research, 2011, 12(2):1025-1068. [3] HINTONG E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2006, 14(8):1771-1800. [4] HINTON G E, OSINDERO S, WELLING M, et al. Unsupervised discovery of nonlinear structure using contrastive back propagation[J]. Cognitive Science, 2006, 30(4):725-731. [5] ZENG Xianhua, LUO Siwei, WANG Jiao. Auto-associative neural network system for recognition[C] // Proceedings of International Conference on Machine Learning and Cybernetics(ICMLC 2007). [S.l.] : IEEE Conference Publications, 2007: 2885-2890. [6] HINTON G E, SALAKHUTDINOV R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [7] HINTONG G E, SALAKHUTDINOV R. Supporting online material for reducing the dimensionality of data with neural networks[J]. Science, 2006, 504(5786):504-507. [8] HINTONG G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554. [9] SMOLENSKY P. Parallel distributed processing: information processing in dynamical systems: foundations of harmony theory[M]. Cambridge, USA: MIT Press, 1986: 194-281. [10] SALAKHUTDINOV R, JOSHUA B, TORRALBA A. Learning with hierarchical-deep models[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(8):1958-1971. [11] LAROCHELLE H, BEMGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[J]. Journal of Machine Learning Research, 2009, 10(6):1-40. [12] 孙志军, 薛磊, 许阳明. 深度学习研究综述[J]. 计算机应用研究, 2012, 29(8):2806-2810. SUN Zhijun, XUE Lei, XU Yangming. The research summary of deep learning[J]. Application Research of Computers, 2012, 29(8):2806-2810. [13] 钟颖, 汪秉文. 基于遗传算法的BP神经网络时间序列预测模型[J]. 系统工程与电子技术, 2002, 24(4):9-11. ZHONG Ying, WANG Bingwen. The back propagation neural network based on genetic algorithm for predicting time series[J]. Journal of Systems Engineering and Electronics, 2002, 24(4):9-11. [14] 张玉瑞, 陈剑波. 基于RBF神经网络的时间序列预测[J]. 计算机工程与应用, 2005, 41(11):74-76. ZHANG Yurui, CHEN Jianbo. A predicting time series model based on radial basis function neural network[J]. Computer Engineering and Applications, 2005, 41(11):74-76. [15] 周若愚. 基于SVR与半监督学习的时间序列预测[D].西安:西安电子科技大学, 2014. ZHOU Ruoyu. A predicting time series model based on support vector regression and semi supervised learning[D]. Xi'an: Xidian University, 2014. |
[1] | Shizhan SONG,Chuanyong WANG,Wenwen KANG,Jian ZHANG,Honghua YAN,Peng LI. PV installed capacity planning for power distribution network based on time series production simulation [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 131-136. |
[2] | HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95. |
[3] | XIE Guohui, FAN Hao. Prediction model of concentrating solar power technology maturity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 83-88. |
[4] | TAO Zhiwei, ZHANG Li. Time series classification using piecewise vector quantized approximation based on Mahalanobis distance [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 51-57. |
[5] | WANG Huiqing, SUN Hongwei, ZHANG Jianhui. Time series similarity searching algorithm based on Map/Reduce [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 15-21. |
[6] | MA Chang-hui1, FENG Jiang-xia2, JIANG Zhe1, WU Nai-hu1, L Xiao-lu3. Wind power prediction based on time-series and BP-ANN [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(1): 85-89. |
[7] | ZHU Yue-long, LI Shi-jin, FAN Qing-song, WAN Ding-sheng. Wavelet-neural network model based complex hydrological time series prediction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(4): 119-124. |
[8] | LI Xiao-bin1, LI Shi-yin2. Ensemble learning of multi-classifier for early classification of time series [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(4): 73-78. |
[9] | LUO Yu-Pan, SHANG Lin. Detect outliers in time series data with multi-granule periodic patterns [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 11-15. |
[10] | LIAO Huo-mu,DONG Zeng-chuan,SHU Long-cang,YUN Ru-an . Combinative time series analysis method for the prediction of the groundwater level [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 96-100 . |
|