Journal of Shandong University(Engineering Science) ›› 2024, Vol. 54 ›› Issue (4): 1-12.doi: 10.6040/j.issn.1672-3961.0.2023.273
• Machine Learning & Data Mining • Next Articles
CHANG Xingong, SU Minhui*, ZHOU Zhigang
CLC Number:
[1] MA Y, TANG J. Deep learning on graphs[M]. Cambridge, UK: Cambridge University Press, 2021. [2] PILLAY K, MOODLEY D. Exploring graph neural networks for stock market prediction on the JSE[J]. Communications in Computer and Information Science, 2022, 1551: 95-110. [3] WU S, SUN F, ZHANG W, et al. Graph neural networks in recommender systems: a survey[J]. ACM Computing Surveys, 2022, 55(5): 1-37 [4] DOU Y, LIU Z, SUN L. Enhancing graph neural network-based fraud detectors against camouflaged fraudsters[C] //Proceedings of the 29th ACM International Conference on Information & Knowledge Management(CIKM'20). New York, USA: Association for Computing Machinery, 2020: 315-324. [5] LIU M, GAO H, JI S. Towards deeper graph neural networks[C] //Proceedings of the 26th ACM SIGKDDInternational Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, 2020: 338-348. [6] ZHANG M, CUI Z, NEUMANN M, et al. An end-to-end deep learning architecture for graph classification[C] //Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. New Orleans, USA: AAAI Press, 2018: 4438-4445. [7] ZHANG M, CHEN Y. Link prediction based on graph neural networks[C] //Proceedings of the 32nd International Conference on Neural Information Processing Systems(NIPS'18). Red Hook, USA: Curran Associates Inc, 2018: 5171-5181. [8] ZHANG Z, CUI P, ZHU W. Deep learning on graphs:a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(1): 249-270. [9] WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 4-24. [10] YUAN H, YU H, GUI S, et al. Explainability in graph neural networks:a taxonomic survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5782-5799. [11] WU L, CUI P, PEI J, et al. Graph neural networks: foundations, frontiers, and applications[M]. Singapore: Springer, 2022. [12] HUANG Z, KOSAN M, MEDYA S, et al. Global counterfactual explainer for graph neural networks[C] //Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining(WSDM'23). New York, USA: Association for Computing Machinery, 2023: 141-149. [13] POPE P E, KOLOURI S, ROSTAMI M, et al.Explainability methods for graph convolutional neural networks[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, USA: IEEE, 2019: 10764-10773. [14] ARRIETA A B, DÍAZ-RODRÍGUEZ N, SER J D, et al. Explainable artificial intelligence(XAI): concepts, taxonomies, opportunities and challenges toward responsible AI[J]. Information Fusion, 2020, 58: 82-115. [15] HUANG Q, YAMADA M, TIAN Y, et al. GraphLIME: local interpretable model explanations for graph neural networks[J]. IEEE Transactions on Knowledge & Data Engineering, 2022, 35(7): 6968-6972. [16] RIBEIROM T, SINGH S, GUESTRIN C. "Why should I trust you?" explaining the predictions of any classifier[C] //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD'16). New York, USA: Association for Computing Machinery, 2016: 1135-1144. [17] YING R, BOURGEOIS D, YOU J, et al.GNNExplainer: generating explanations for graph neural networks[C] //Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, USA: Curran Associates Inc, 2019: 9240-9251. [18] LUO D, CHENG W, XU D, et al. Parameterized explainer for graph neural network[C] //Proceedings of the 34th International Conference on Neural Information Processing Systems(NIPS'20). Red Hook, USA: Curran Associates Inc, 2020: 19620-19631. [19] DUVAL A, MALLIAROS F D. GraphSVX: Shapley value explanations for graph neural networks[C] //Machine Learning and Knowledge Discovery in Databases. Cham, Switzerland: Springer, 2021: 302-318. [20] YUAN H, YU H, WANG J, et al. On explainability of graph neural networks via subgraph explorations[C] // Proceedings of the 38th International Conference on Machine Learning. New York, USA: PMLR, 2021: 12241-12252. [21] MUENYE I D, SUN Y. A survey of ensemble learning:concepts, algorithms, applications, and prospects[J]. IEEE Access, 2022, 10: 99129-99149. [22] 周志华. 集成学习:基础与算法[M]. 北京: 电子工业出版社, 2020. [23] 胡毅, 瞿博阳, 梁静, 等. 进化集成学习算法综述[J].智能科学与技术学报, 2021, 3(1): 18-35. HU Yi, QU Boyang, LIANG Jing, et al. A survey on evolutionary ensemble learning algorithm[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 18-35. [24] 姚旭, 王晓丹, 张玉玺, 等. 基于随机子空间和 AdaBoost 的自适应集成方法[J]. 电子学报, 2013, 41(4): 810-814. YAO Xu, WANG Xiaodan, ZHANG Yuxi, et al. A self-adaption ensemble algorithm based on random subspace and AdaBoost[J]. Acta Electronica Sinica, 2013, 41(4): 810-814. [25] KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80: 8091-8126. [26] DHAL K G, RAY S, DAS A, et al. A survey on nature-inspired optimization algorithms and their application in image enhancement domain[J]. Archives of Computational Methods in Engineering, 2019, 26: 1607-1638. [27] DAI E, WANG S. Towards self-explainable graph neural network[C] //Proceedings of the 30th ACM International Conference on Information & Knowledge Management(CIKM'21). New York, USA: Association for Computing Machinery, 2021: 302-311. [28] WU Z, RAMSUNDAR B, FEINBERG E N, et al. MoleculeNet: a benchmark for molecular machine learning[J]. Chemical Science, 2018, 9(2): 513-530. |
[1] | YANG Jucheng, WEI Feng, LIN Liang, JIA Qingxiang, LIU Jianzheng. A research survey of driver drowsiness driving detection [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 1-12. |
[2] | XIAO Wei, ZHENG Gengsheng, CHEN Yujia. Named entity recognition method combined with self-training model [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 96-102. |
[3] | Gang HU, Lemeng WANG, Zhiyu LU, Qin WANG, Xiang XU. Importance identification method based on multi-order neighborhood hierarchical association contribution of nodes [J]. Journal of Shandong University(Engineering Science), 2024, 54(1): 1-10. |
[4] | Jiachun LI,Bowen LI,Jianbo CHANG. An efficient and lightweight RGB frame-level face anti-spoofing model [J]. Journal of Shandong University(Engineering Science), 2023, 53(6): 1-7. |
[5] | Yujiang FAN,Huanhuan HUANG,Jiaxiong DING,Kai LIAO,Binshan YU. Resilience evaluation system of the old community based on cloud model [J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 1-9, 19. |
[6] | Ying LI,Jiankun WANG. The classification of mild cognitive impairment based on supervised graph regularization and information fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 65-73. |
[7] | YU Yixuan, YANG Geng, GENG Hua. Multimodal hierarchical keyframe extraction method for continuous combined motion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 42-50. |
[8] | ZHANG Hao, LI Ziling, LIU Tong, ZHANG Dawei, TAO Jianhua. A technology prediction model based on fuzzy Bayesian networks with sociological factors [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 23-33. |
[9] | WU Yanli, LIU Shuwei, HE Dongxiao, WANG Xiaobao, JIN Di. Poisson-gamma topic model of describing multiple underlying relationships [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 51-60. |
[10] | YU Mingjun, DIAO Hongjun, LING Xinghong. Online multi-object tracking method based on trajectory mask [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 61-69. |
[11] | HUANG Huajuan, CHENG Qian, WEI Xiuxi, YU Chuchu. Adaptive crow search algorithm with Jaya algorithm and Gaussian mutation [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 11-22. |
[12] | LIU Fangxu, WANG Jian, WEI Benzheng. Auxiliary diagnosis algorithm for pediatric pneumonia based on multi-spatial attention [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 135-142. |
[13] | LIU Xing, YANG Lu, HAO Fanchang. Finger vein image retrieval based on multi-feature fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 118-126. |
[14] | Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114. |
[15] | Xiaobin XU,Qi WANG,Bin GAO,Zhiyu SUN,Zhongjun LIANG,Shangguang WANG. Pre-allocation of resources based on trajectory prediction in heterogeneous networks [J]. Journal of Shandong University(Engineering Science), 2022, 52(4): 12-19. |
|