Journal of Shandong University(Engineering Science) ›› 2023, Vol. 53 ›› Issue (3): 60-68.doi: 10.6040/j.issn.1672-3961.0.2021.598

• Civil Engineering • Previous Articles     Next Articles

Seepage characteristics of soil-structure contact under confining pressure

Jian LIU1(),Hao YANG2,Xiaolin CUI3   

  1. 1. School of Qilu Transportation, Shandong University, Jinan 250061, Shandong, China
    2. School of Civil Engineering, Shandong University, Jinan 250002, Shandong, China
    3. Yellow River Shandong Bureau of Yellow River Conservancy Commission of the Ministry of Water Resources, Jinan 250011, Shandong, China
  • Received:2021-12-07 Online:2023-06-20 Published:2023-07-07

Abstract:

To study the problem of particle loss in the process of contact seepage between soil-structure, a contact seepage failure test device under the combined action of seepage and pressure was designed. The effects of clay mass fraction, confining pressure and roughness of contact surface on particle erosion process under this condition were studied by experimental research. Under the combined action of seepage and pressure, three-stage phenomenon of particle erosion in contact seepage were appeared, which was seepage stability stage, particle migration stage and particle erosion stage respectively. The influence parameters of roughness, clay mass fraction and confining pressure on the particle erosion conditions of soil-structure interface were analyzed by multifactor analysis of variance. Considering the 95% confidence interval, the degree of influence, from large to small, was as follows: clay mass fraction, confining pressure, roughness. After fitting the formula by Quasi-Newton method, the formula of hydraulic conditions of particle erosion was put forward. The results could provide data support for infrastructure design with contact surface.

Key words: contact seepage, confining pressure, effect analysis, particle erosion, failure condition

CLC Number: 

  • TU43

Fig.1

Device of soil-structure interfacial erosion test"

Fig.2

Diagram of soil sample and loading"

Table 1

Soil sample material ratio"

黏粒质量分数/% 不同颗粒粒径的石英粉质量分数/%
5 μm≤r<7.5 μm 7.5 μm≤r<12 μm 12 μm≤r<18 μm 18 μm≤r<35 μm 35 μm≤r<75 μm
5 45 20 10 10 10
9 41 20 10 10 10
12 38 20 10 10 10
15 35 20 10 10 10

Table 2

Parameters of each soil sample"

土样编号 黏粒质量分数/% 塑限/% 液限/% 塑性指数 液性指数(含水率20%)
1-1 5 20.85 31.47 10.62 -0.08
1-2 9 20.66 32.18 11.52 -0.06
1-3 12 20.29 33.23 12.94 -0.02
1-4 15 19.88 34.46 14.57 0.01

Table 3

Calibration of surface roughness treatment parameters"

编号 砂径/μm 压力/kPa 粗糙度/μm
1 1 000~1 250 600 75
2 630~800 600 65
3 630~800 400 55
4 500~630 400 45
5 1 000~1 250 300 35
6 630~800 300 20

Table 4

Erosion test scheme under combined action of seepage and pressure"

工况 试验因素
粗糙度/μm 黏粒质量分数/% 围压/kPa
1 55 5 50
2 55 5 80
3 55 5 120
4 55 5 150
5 55 9 50
6 55 9 80
7 55 9 120
8 55 9 150
9 55 12 50
10 55 12 80
11 55 12 120
12 55 12 150
13 55 15 50
14 55 15 80
15 55 15 120
16 55 15 150
17 35 15 120
18 65 15 120
19 75 15 120

Fig.3

Erosion test results of condition 3/15/19"

Table 5

Test results for each condition indicator"

工况 迁移水力/kPa 冲蚀水力/kPa 切向变形/mm 法向变形/mm
1 15 29 0.49 31.69
2 27 32 0.53 26.35
3 30 42 0.47 23.38
4 35 40 0.51 21.86
5 17 50 0.03 1.40
6 32 69 0.10 7.96
7 33 71 0.24 14.98
8 42 77 0.42 15.98
9 32 58 0.00 0.46
10 50 70 0.01 0.08
11 57 77 0.20 8.22
12 62 80 0.32 11.54
13 37 58 0.00 0.13
14 57 86 0.05 0.32
15 72 109 0.17 6.09
16 100 126 0.26 10.10
17 62 107 0.18 9.41
18 87 113 0.08 2.18
19 106 115 0.04 0.92

Table 6

Variance analysis for hydraulic conditions of particle migration at various factors"

来源 偏差平方和 自由度 均方和 F
因素A 4 658.60 3 1 552.87 2.52
因素B 1 504.03 3 501.34 0.81
因素C 802.29 3 267.43 0.43
误差 5 547.61 9 616.40
总偏差 12 512.53 18

Table 7

Variance analysis for hydraulic conditions of particle erosion at various factors"

来源 偏差平方和 自由度 均方和 F
因素A 4 304.85 3 1 434.95 1.58
因素B 2 313.68 3 771.23 0.85
因素C 740.74 3 246.91 0.27
误差 8 165.26 9 907.25
总偏差 15 524.53 18

Table 8

Variance analysis for tangential deformation condition at various factors"

来源 偏差平方和 自由度 均方和 F
因素A 0.054 3 0.018 0.35
因素B 0.100 3 0.033 0.65
因素C 0.030 3 0.010 0.19
误差 0.465 9 0.052
总偏差 0.650 18

Table 9

Variance analysis for normal deformation condition at various factors"

来源 偏差平方和 自由度 均方和 F
因素A 150.94 3 28.260 0.37
因素B 307.03 3 176.301 0.76
因素C 63.29 3 127.449 0.16
误差 1 219.71 9 40.317
总偏差 1 740.97 18

Fig.4

Influence trend of clay content on each seepage condition index"

Fig.5

Influence trend of confining pressure on each seepage condition index"

Fig.6

Influence trend of confining pressure on each seepage condition index when σ=120 kPa and wC=15%"

1 夏红春, 周国庆. 土-结构接触面剪切力学特性及其影响因素试验[J]. 中国矿业大学学报, 2010, 39 (6): 831- 836.
XIA Chunhong , ZHOU Guoqing . Experimental study of the shear mechanical characteristics at a soil-structure interface and the factors affecting them[J]. Journal of China University of Mining Technology, 2010, 39 (6): 831- 836.
2 张嘎, 张建民. 粗粒土与结构接触面的可逆性与不可逆性剪胀规律[J]. 岩土力学, 2005, (5): 699- 704.
doi: 10.3969/j.issn.1000-7598.2005.05.005
ZHANG Ga , ZHANG Jianmin . Reversible and irreversible dilatancy of soil-structure interface[J]. Rock and Soil Mechanics, 2005, (5): 699- 704.
doi: 10.3969/j.issn.1000-7598.2005.05.005
3 DESAI S , PRADHAN K , COHEN D . Cyclic testing and constitutive modeling of satu-rated sand-concrete interfaces using the disturbed state concept[J]. International Journal of Geomechanics, 2005, 5 (4): 286- 294.
doi: 10.1061/(ASCE)1532-3641(2005)5:4(286)
4 周爱兆, 卢廷浩, 丁明武, 等. 接触面等应力增量比路径单剪试验及模型研究[J]. 四川大学学报(工程科学版), 2009, 41 (4): 76- 81.
ZHOU Aizhao , LU Tinghao , DING Mingwu , et al. Simple shear test and model study of interface under constant stress increment ratio stress paths[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41 (4): 76- 81.
5 YOSHIMI Y , KISHIDA T . A ring torsion apparatus for evaluating friction between soil and metal surfaces[J]. Geotechnical Testing Journal, 1981, 4 (4): 145- 452.
doi: 10.1520/GTJ10783J
6 REBOUL N , VINCENS E , CAMBOU B . A computational procedure to assess the distribution of constriction sizes for an assembly of spheres[J]. Computers & Geotechnics, 2010, 37 (1): 195- 206.
7 BEGUIN R , PHILIPPE P , FAURE Y H . Pore-scale flow measurements at the interface between a sandy layer and a model porous medium: application to statistical modeling of contact erosion[J]. Journal of Hydraulic Engineering ASCE, 2013, 139 (1): 1- 11.
doi: 10.1061/(ASCE)HY.1943-7900.0000641
8 朱亚军, 彭君, 陈群. 砂砾石与黏土的接触冲刷试验研究[J]. 岩土工程学报, 2016, 38 (增刊2): 92- 97.
ZHU Yajun , PENG Jun , CHEN Qun . Contact scouring tests on sandy gravel and cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (Suppl.2): 92- 97.
9 陈群, 彭君, 朱分清. 砂砾石与砂接触冲刷试验研究[J]. 岩土力学, 2016, 37 (增刊1): 295- 300.
CHEN Qun , PENG Jun , ZHU Fenqing . Experimental study of contact scouring between sandy gravel and sand[J]. Rock and Soil Mechanics, 2016, 37 (Suppl.1): 295- 300.
10 KIM H , PARK J , SHIN J . Flow behavior and piping potential at the soil-structure interface[J]. Geotechnique, 2018, 69 (1): 1- 6.
11 岳秀丽. 土与混凝土接触渗流破坏试验及数值模拟研究[D]. 济南: 山东大学, 2017.
YUE Xiuli. Tests and numerical simulation on seepage failure of contact surface between soil and concrete[D]. Jinan: Shandong University, 2017.
12 XIE Quanyi , LIU Jian , HAN Bo , et al. Experimental and numerical investigation of bottom outlet leakage in earth-fill dams[J]. Journal of Performance of Constructed Facilities, 2019, 33 (3): 1- 12.
13 陈建生, 刘建刚, 焦月红. 接触冲刷发展过程模拟研究[J]. 中国工程科学, 2003, 5 (7): 33- 39.
CHEN Jiansheng , LIU Jiangang , JIAO Yuehong . Simulation study of contact scour development process[J]. Engineering Science, 2003, 5 (7): 33- 39.
14 雷红军, 刘中阁, 于玉贞, 等. 黏土-结构接触面大剪切变形后渗流特性试验研究[J]. 岩土力学, 2011, 32 (4): 1040- 1044.
LEI Hongjun , LIU Zhongge , YU Yuzhen , et al. Experimental study of seepage characteristics of clayey soil-structure interface under large shear deformation[J]. Rock and Soil Mechanics, 2011, 32 (4): 1040- 1044.
15 张力, 梁发云, 王琛. 水平渗流作用下无黏性土接触冲刷细颗粒起动机理分析[J]. 工程力学, 2021, 38 (5): 143- 150.
ZHANG Li , LIANG Fayun , WANG Chen . Fine soil particle entrainment induced by contact erosion between cohesionless soil layers under horizontal seepage condition[J]. Strategic Study of CAE, 2021, 38 (5): 143- 150.
16 崔晓琳. 压力渗流耦合作用下土与结构接触面渗流破坏条件研究[D]. 济南: 山东大学, 2020.
CUI Xiaolin. Study on seepage failure criteria of soil-structure interface under pressure-seepage coupling[D]. Jinan: Shandong University, 2020.
17 高文静. 细粒土渗透特性的影响因素试验研究[D]. 西安: 西安理工大学, 2018.
GAO Wenjing. Influence of clay particles on soil permeability[D]. Xi'an: Xi'an University of Technology, 2018.
18 焦浩然. 应力状态下细粒土的渗透性试验研究[D]. 合肥: 合肥工业大学, 2020.
JIAO Haoran. Experimental study on permeability of fine-grained soil under different stress states[D]. Hefei: Hefei University of Technology, 2020.
19 谈家诚, 沈振中, 张宏伟, 等. 考虑黏土-结构接触变形的剪切-渗流耦合试验[J]. 岩土工程学报, 2022, 44 (9): 1679- 1688.
TAN Jiacheng , SHEN Zhenzhong , ZHANG Hongwei , et al. Shear-seepage coupling experimental study on clayey soil-structure interface under contact deformation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44 (9): 1679- 1688.
20 成浩, 王晅, 张家生, 等. 考虑粗糙度影响的不同土与混凝土界面大型直剪试验研究[J]. 工程科学与技术, 2019, 51 (5): 117- 125.
CHENG Hao , WANG Xuan , ZHANG Jiasheng , et al. Large-scale direct shear tests of interfaces between different soils and concrete considering roughness effect[J]. Advanced Engineering Sciences, 2019, 51 (5): 117- 125.
21 陆勇, 周国庆, 夏红春, 等. 中、高压下粗粒土-结构接触面特性受结构面形貌尺度影响的试验研究[J]. 岩土力学, 2013, 34 (12): 3491- 3499.
[1] Jiachen GONG,Shihai CHEN. Experimental study on mechanical parameters and wave velocity variation of sandstone under high ground stress [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 82-87, 97.
[2] ZHANG Wei, LI Haitao, WANG Jian, WANG Li. SHPB experimental study of mortar simulating fractured rock under static and dynamic load combination [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 97-104.
[3] FU Chang, JIANG Mingjing, SHEN Zhifu, WANG Huaning, WU Xiaofeng. Experiments on influence factors of dynamic shear modulus and damping ratio of unsaturated soil [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(5): 35-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[6] LAI Xiang . The global domain of attraction for a kind of MKdV equations[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 87 -92 .
[7] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[8] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[9] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[10] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .