Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (3): 82-87, 97.doi: 10.6040/j.issn.1672-3961.0.2019.622

• Civil Engineering • Previous Articles     Next Articles

Experimental study on mechanical parameters and wave velocity variation of sandstone under high ground stress

Jiachen GONG1(),Shihai CHEN1,2,*()   

  1. 1. College of Civil Engineering, Huaqiao University, Xiamen 361021, Fujian, China
    2. Fujian Research Center for Tunneling and Urban Underground Space Engineering, Xiamen 361021, Fujian, China
  • Received:2019-10-17 Online:2020-06-01 Published:2020-06-16
  • Contact: Shihai CHEN E-mail:836408502@qq.com;cshblast@163.com
  • Supported by:
    国家自然科学基金资助项目(51974136);华侨大学研究生科研创新基金资助项目(17014086007)

Abstract:

A large number of studies showed that high ground stress had a certain influence on the wave velocity of deep buried rock, based on the wave equation, a mathematical model of the relationship between longitudinal wave velocity of sandstone and hydrostatic confining pressure was proposed. Based on the conventional triaxial test of rock, the static elastic modulus, static Poisson's ratio and longitudinal wave velocity of sandstone under different hydrostatic confining pressures were obtained, and the fitting curves and fitting formulas of static elastic modulus-hydrostatic confining pressure and static Poisson's ratio-hydrostatic confining pressure were obtained respectively. The test results showed that the static elastic modulus and static Poisson's ratio of sandstone increased with the increase of hydrostatic pressure, and the rate of increase of static elastic modulus decreased slowly. Based on the wave equation, the mathematical model of the longitudinal wave velocity-hydrostatic confining pressure was obtained, the longitudinal wave velocity calculated by the mathematical model showed that the longitudinal wave velocity of the sandstone increased with the increase of the hydrostatic pressure, and the increasing rate gradually became slower. The calculated longitudinal wave velocity was compared with the measured, the error range was 7.0%-8.3%. Therefore, the mathematical model of sandstone longitudinal wave velocity-hydrostatic confining pressure based on wave equation was reliable and accurate, it was of guiding significance to analyze and judge the physical and mechanical parameters of rock under high ground stress and the variation law of wave velocity.

Key words: high ground stress, wave equation, sandstone, longitudinal wave velocity, hydrostatic confining pressure, static elastic modulus, static Poisson′s ratio

CLC Number: 

  • TD23

Fig.1

Sample and equipment installation diagram"

Fig.2

Sandstone uniaxial stress-strain curve"

Fig.3

Triaxial stress-strain curves of sandstone under different confining pressures"

Table 1

Static and elastic parameters of sandstone under different hydrostatic confining pressures"

编组 围压/MPa 静弹性模量/GPa 静泊松比
1-1 6 21.82 0.013
1-2 8 22.64 0.028
1-3 10 23.43 0.046
1-4 12 24.26 0.062
1-5 14 24.96 0.074
1-6 16 25.44 0.089

Table 2

Fitting formula of static elastic parameter and hydrostatic confining pressure"

拟合公式 相关系数 a b
静弹性模量 E=a ln σ+b 0.989 91 3.785 30 14.881 30
静泊松比 μ=a ln σ+b 0.981 28 0.073 28 -0.121 02

Fig.4

Fitting curve of static elastic modulus and hydrostatic pressure"

Fig.5

Fitting curve of static Poisson's ratio and hydrostatic pressure"

Table 3

Calculation of longitudinal wave velocity in sandstone under different hydrostatic confining pressures"

编组 静水围压/MPa 计算纵波波速/(m·s-1)
1-1 6 3 049
1-2 8 3 114
1-3 10 3 179
1-4 12 3 239
1-5 14 3 289
1-6 16 3 337

Fig.6

Fitting curve of the calculated longitudinal wave velocity and hydrostatic pressure"

Table 4

Measured longitudinal wave velocity of sandstone under different hydrostatic confining pressures"

编组 静水围压/MPa 实测纵波波速/(m·s-1)
1-1 6 2 814
1-2 8 2 886
1-3 10 2 952
1-4 12 3 012
1-5 14 3 066
1-6 16 3 118

Table 5

Comparison of measured longitudinal wave velocity and calculation of longitudinal wave velocity"

静水围压/
MPa
实测纵波波速/
(m·s-1)
计算纵波波速/
(m·s-1)
误差/
%
6 2 814 3 049 8.3
8 2 886 3 114 7.9
10 2 952 3 179 7.7
12 3 012 3 239 7.5
14 3 066 3 289 7.2
16 3 118 3 337 7.0
1 吴迪, 陈子全, 甘林卫, 等. 高地应力深埋层状围岩隧道非对称变形受力机制研究[J]. 隧道建设(中英文), 2018, 38 (11): 1813- 1821.
WU Di , CHEN Ziquan , GAN Linwei , et al. Study of force mechanism of asymmetrical deformation of deep-buried layered surrounding rock tunnel under high ground stress[J]. Tunnel Construction (Chinese and English), 2018, 38 (11): 1813- 1821.
2 刘宁, 张春生, 褚卫江, 等. 超深埋长隧道地应力场综合反分析方法与应用[J]. 中国公路学报, 2018, 31 (10): 69- 78.
doi: 10.3969/j.issn.1001-7372.2018.10.007
LIU Ning , ZHANG Chunsheng , CHU Weijiang , et al. Comprehensive inversion analysis method and application of deep buried long tunnel geo-stress field[J]. China Journal of Highway and Transport, 2018, 31 (10): 69- 78.
doi: 10.3969/j.issn.1001-7372.2018.10.007
3 BIRCH F . The velocity of compressional waves in rocks to 10 kilobars: part 1[J]. Journal of Geophysical Research, 1960, 65 (4): 1083- 1102.
doi: 10.1029/JZ065i004p01083
4 MAO N H , SWEENEY J , HANSON J M , et al. Using a sonic technique to estimate in-situ stresses[J]. Rocks Mechanic in Productivity and protection, 1984, 22 (6): 167- 175.
doi: 10.1016/0148-9062(85)90172-x
5 EBERHART-PHILLIPS D , HAN D H , ZOBACK M D . Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone[J]. Geophysics, 1989, 54 (1): 82- 89.
6 GREENFIELD R J , GRAHAM E K . Application of a simple relation for describing wave velocity as a function of pressure in rocks containing microcracks[J]. Journal of Geophysical Research Solid Earth, 1996, 101 (B3): 5643- 5652.
doi: 10.1029/95JB03462
7 WEPFER W W , CHRISTENSEN N I . A seismic velocity-confining pressure relation, with applications[J]. International Journal of Rock Mechanics, 1991, 28 (5): 451- 456.
doi: 10.1016/0148-9062(91)90083-X
8 WANG Q , JI S , SALISBURY M H , et al. Pressure dependence and anisotropy of P-wave velocities in ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt (China): implications for seismic properties of subducted slabs and origin of mantle reflections[J]. Tectonophysics, 2005, 398 (1): 67- 99.
doi: 10.1016/j.tecto.2004.12.001
9 ZHAO H , LI X P , LUO Y , et al. Characteristics of elastic wave propagation in jointed rock mass and development of constitutive model by coupling macroscopic and mesoscopic damage[J]. Rock and Soil Mechanics, 2017, 38 (10): 2939- 2948.
10 JI S , WANG Q , MARCOTTE D , et al. P Wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure[J]. Journal of Geophysical Research Solid Earth, 2007, 112 (B9): 685- 693.
11 童继强, 杨德义, 李志军, 等. 不同围压下煤层波速的实验分析[J]. 煤矿安全, 2017, 48 (11): 49- 52.
TONG Jiqiang , YANG Deyi , LI Zhijun , et al. Experimental analysis of wave velocity of coal seam under different confining pressures[J]. Safety in Coal Mines, 2017, 48 (11): 49- 52.
12 沈联蒂, 史謌. 岩性、含油气性、有效覆盖压力对纵、横波速度的影响[J]. 地球物理学报, 1994, 37 (3): 391- 399.
doi: 10.3321/j.issn:0001-5733.1994.03.014
SHEN Liandi , SHI Ge . Effect of lithologic character, petroleum and effective overburden pressure on compressional wave and shear wave velocity[J]. Chinese Journal of Geophysics, 1994, 37 (3): 391- 399.
doi: 10.3321/j.issn:0001-5733.1994.03.014
13 王密, 田家勇. 基于岩石声弹理论的波速-静水围压关系耦合模型[J]. 地球物理学进展, 2019, 34 (2): 462- 468.
WANG Mi , TIAN Jiayong . Coupled model for velocity change in rocks subjected to hydrostatic confining pressure based on rock acoustoelasticity[J]. Progress in Geophysics, 2019, 34 (2): 462- 468.
14 马中高, 伍向阳, 王中海. 有效压力对岩石纵横波速度的影响[J]. 勘探地球物理进展, 2006, (3): 183- 186.
MA Zhonggao , WU Xiangyang , WANG Zhonghai . Effect of effective pressure on the longitudinal and transverse wave velocity of rock[J]. Progress in Exploration, 2006, (3): 183- 186.
15 李阿伟, 孙东生, 王红才. 致密砂岩波速各向异性及弹性参数随围压变化规律的实验研究[J]. 地球物理学进展, 2014, 29 (2): 754- 760.
LI Awei , SUN Dongsheng , WANG Hongcai . Seismic anisotropy and elastic parameter of tight sandstone with confining pressure[J]. Progress in Geophysics, 2014, 29 (2): 754- 760.
16 陶明.高应力岩体的动态加卸荷扰动特征与动力学机理研究[D].长沙:中南大学, 2013.
TAO Ming. Characteristic of dynamic loading and unloading responses and dynamic mechanism of rocks under high initial stress[D]. Changsha: Central South University, 2013.
17 赵航.基于弹性波传播特性试验的深部裂隙岩体损伤本构模型研究[D].武汉:武汉理工大学, 2017.
ZHAO Hang. Study on damage constitutive model of deep fractured rock mass based on elastic wave propagation test[D]. Wuhan: Wuhan University of Techno-logy, 2017.
18 周斌, 孙峰, 薛世峰, 等. 水库蓄放水对库底岩石介质弹性波速影响的数值模拟[J]. 地震地质, 2014, 36 (1): 39- 51.
doi: 10.3969/j.issn.0253-4967.2014.01.004
ZHOU Bin , SUN Feng , XUE Shifeng , et al. Numerical simulation of the influence of reservoir water storage on elastic wave velocity of reservoir bottom rock[J]. Seismology and Geology, 2014, 36 (1): 39- 51.
doi: 10.3969/j.issn.0253-4967.2014.01.004
19 金解放, 王杰, 郭钟群, 等. 围压对红砂岩应力波传播特性的影响[J]. 煤炭学报, 2019, 44 (2): 435- 444.
JIN Jiefang , WANG Jie , GUO Zhongqun , et al. Influence of confining pressure on stress wave propagation characteristics of red sandstone[J]. Journal of China Coal Society, 2019, 44 (2): 435- 444.
20 李元松. 高等岩土力学[M]. 武汉: 武汉大学出版社, 2013.
[1] WU Nong, ZHANG Xiao, LI Mengtian. Research on new grouting equipment and method for the treatment of gushing water in porosity sandstone [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(4): 64-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[4] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[5] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[6] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[7] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[8] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[9] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .
[10] YUE Yuan-Zheng. Relaxation in glasses far from equilibrium[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 1 -20 .