您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (2): 97-105.doi: 10.6040/j.issn.1672-3961.0.2024.010

• 土木工程 • 上一篇    下一篇

碳化钢渣细骨料混凝土本构关系

薛刚1,2,3,邬松1*,董伟1,2   

  1. 1.内蒙古科技大学土木工程学院, 内蒙古 包头 014010;2.内蒙古自治区土木工程安全与耐久性重点实验室, 内蒙古 包头 014010;3.内蒙古自治区建筑结构防灾减灾工程技术研究中心, 内蒙古 包头 014010
  • 发布日期:2025-04-15
  • 作者简介:薛刚(1968— ),男,内蒙古包头人,教授,硕士生导师,博士,主要研究方向为新型混凝土材料与结构. E-mail:xuegang-2008@126.com. *通信作者简介:邬松(1994— ),男,江西抚州人,硕士研究生,主要研究方向为新型混凝土材料与结构. E-mail:2922487106@qq.com
  • 基金资助:
    国家自然科学基金资助项目(52168032);2023年度自治区直属高校基本科研业务费资助项目(2023RCTD025)

Properties of carbonized steel slag fine aggregate concrete

XUE Gang1,2,3, WU Song1*, DONG Wei1,2   

  1. XUE Gang1, 2, 3, WU Song1*, DONG Wei1, 2(1. College of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China;
    2. Inner Mongolia Autonomous Region Key Laboratory of Civil Engineering Safety and Durability, Baotou 014010, Inner Mongolia, China;
    3. Inner Mongolia Autonomous Region Building Structure Disaster Prevention and Mitigation Engineering Technology Research Center, Baotou 014010, Inner Mongolia, China
  • Published:2025-04-15

摘要: 为研究碳化钢渣细骨料对混凝土性能的影响规律,对碳化钢渣进行物理化学试验,制备了普通混凝土及10%、20%及30%三种体积分数的碳化钢渣细骨料混凝土(carbonized steel slag fine aggregate concrete, CSSFC),研究碳化钢渣体积分数对混凝土力学性能及体积安定性的影响规律。结果表明:随着碳化钢渣细骨料体积分数由10%递增至30%,CSSFC的立方体抗压强度、劈裂抗拉强度、弹性模量及峰值应变均逐渐增大,普通混凝土轴心抗压强度与立方体抗压强度的比值为0.76~0.82,CSSFC的轴心抗压强度与立方体抗压强度的比值为0.85~0.87。研究了适用于CSSFC的本构关系模型,并分析模型拟合参数与力学性能间的关系,以期为钢渣混凝土的应用及推广提供试验及理论依据。

关键词: 碳化钢渣, 混凝土, 细骨料, 力学性能, 本构关系

Abstract: In order to study the applicability of the carbon steel slag fine aggregate in concrete and mechanical properties of differences, physical and chemical tests were conducted on carbonated steel slag. Based on this, ordinary concrete and fine aggregate concrete with 10%, 20% and 30% carbonized steel slag were prepared. The influence law of the replacement rate of steel carbide slag on the mechanical properties and volume stability of concrete was studied. Research had found that with the addition of fine aggregate of carbonized steel slag from 10% to 30%, the cube compressive strength, splitting tensile strength, elastic modulus, and peak strain of carbonized steel slag aggregate concrete gradually increased. Axis of normal concrete compressive strength and cube compressive strength ratio was 0.76-0.82, and that of carbonized steel slag concrete was 0.85-0.87. At the same time, the constitutive relationship models applicable to carbonated steel slag fine aggregate concrete were studied and summarized, and the relationship between model fitting parameters and mechanical properties was analyzed, In order to provide theoretical support for the application and popularization of steel slag concrete.

Key words: carbonized steel slag, concrete, fine aggregate, mechanical property, constitutive relation

中图分类号: 

  • TU528
[1] LI Z, SHEN A, YANG X, et al. A review of steel slag as a substitute for natural aggregate applied to cement concrete[J]. Road Materials and Pavement Design, 2023, 24(2):537-559.
[2] VAN H Q, HUYNH T P. A comprehensive investigation on the impacts of steel slag aggregate on characteristics of high-performance concrete incorporating industrial by-products[J]. Journal of Building Engineering, 2023, 80: 107982.
[3] 何亮, 詹程阳, 吕松涛, 等. 钢渣沥青混合料应用现状[J]. 交通运输工程学报, 2020, 20(2): 15-33. HE Liang, ZHAN Chengyang, LÜ Songtao, et al. Application status of steel slag asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 15-33.
[4] 何懋灿. 加速碳化钢渣骨料的制备及其应用研究[D]. 合肥: 安徽建筑大学, 2020. HE Maocan. Accelerate the preparation and application of carbonized steel slag aggregate[D]. Hefei: Anhui Jianzhu University, 2020.
[5] SHEN W G, LIU Y, WU M M, et al. Ecological carbonated steel slag pervious concrete prepared as a key material of sponge city[J]. Journal of Cleaner Production, 2020, 256: 120244.
[6] PANG B, ZHOU Z, HOU P, et al. Autogenous and engineered healing mechanisms of carbonated steel slag aggregate in concrete[J]. Construction and Building Materials, 2016, 107: 191-202.
[7] WANG Q, WANG D Q, ZHUANG S Y. The soundness of steel slag with different free CaO and MgO contents[J]. Construction and Building Materials, 2017, 151: 138-146.
[8] 李斌, 力乙鹏, 王晨霞, 等. 水淬钢渣混凝土应力-应变全曲线试验研究[J]. 建筑结构学报, 2019, 40(8): 163-169. LI Bin, LI Yipeng, WANG Chenxia, et al. Experimental study on full stress-strain curve of water quenched steel slag concrete[J]. Journal of Building Structure, 2019, 40(8): 163-169.
[9] 贺希茂, 葛序尧, 张波. 钢渣骨料混凝土基本力学性能研究[J]. 建筑科学, 2023, 39(3): 37-43. HE Ximao, GE Xuyao, ZHANG Bo. Research on basic mechanical properties of steel slag aggregate concrete[J]. Building Science, 2023, 39(3): 37-43.
[10] ANDRADE H D, DE C J M F, COSTA L C B, et al. Mechanical performance and resistance to carbonation of steel slag reinforced concrete[J]. Construction and Building Materials, 2021, 298: 123910.
[11] 薛刚, 孙立所, 赵玉杰, 等. 基于宏-细观尺度的钢渣混凝土力学性能研究[J].工业建筑, 2022, 52(1): 180-186. XUE Gang, SUN Lisuo, ZHAO Yujie, et al. Research on mechanical properties of steel slag concrete based on macro-micro scale[J]. Industrial Construction, 2022, 52(1): 180-186.
[12] 薛刚, 付乾, 周海峰, 等. 钢渣细骨料混凝土单轴受压应力-应变关系试验研究[J].西南交通大学学报, 2022, 57(6): 1165-1174. XUE Gang, FU Qian, ZHOU Haifeng, et al. Experimental study on stress-strain relationship of steel slag fine aggregate concrete under uniaxial compression[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1165-1174.
[13] 张平, 张冰心, 常钧. 钢渣砖碳酸化性能的研究[J]. 炼钢, 2022, 38(2): 83-88. ZHANG Ping, ZHANG Bingxin, CHANG Jun. Study on carbonation performance of steel slag brick[J]. Steelmaking, 2022, 38(2): 83-88.
[14] 曾海马, 刘志超, 王发洲. 碳化养护对大掺量钢渣砂浆的力学性能及显微结构的影响[J].硅酸盐学报, 2020, 48(11): 1801-1807. ZENG Haima, LIU Zhichao, WANG Fazhou. Effect of carbonization curing on mechanical properties and microstructure of high-content steel slag mortar[J]. Journal of the Silicate, 2020, 48(11): 1801-1807.
[15] 中华人民共和国工业和信息化部, 中国国家标准化管理委员会. 通用硅酸盐水泥: GB 175—2023[S]. 北京: 中国建筑工业出版社, 2009.
[16] 中国建筑材料联合会. 建设用砂: GB/T 14684—2022[S]. 北京: 中国建筑工业出版社, 2022.
[17] 中国建筑材料联合会. 建设用卵石、碎石: GB/T 14685—2022[S]. 北京: 中国建筑工业出版社, 2022.
[18] 中国建筑材料联合会. 水泥压蒸安定性试验方法: GB/T 750—1992[S]. 北京: 中国建筑工业出版社, 1992.
[19] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.
[20] ZENG S F, NIU D T, WANG Y, et al. Insight into mechanical properties and microstructure of concrete containing steel slag and ground-granulated blast-furnace slag[J]. Journal of Sustainable Cement-Based Materials, 2023, 12(9): 1169-1180.
[21] XUE G, FU Q, XU S, et al. Macroscopic mechanical properties and microstructure characteristics of steel slag fine aggregate concrete[J]. Journal of Building Engineering, 2022, 56: 104742.
[22] LI S, LIU G, YU Q S. The role of carbonated steel slag on mechanical performance of ultra-high performance concrete containing coarse aggregates[J]. Construction and Building Materials, 2021, 307: 124903.
[23] COSTA L C B, NOGUEIRA M A, ANDRADE H D, et al. Mechanical and durability performance of concretes produced with steel slag aggregate and mineral admixtures[J]. Construction and Building Materials, 2022, 318: 126152.
[24] GONZALEZ-ORTEGA M A, CAVALARO S H P, DE S G R, et al. Durability of concrete with electric arc furnace slag aggregate[J]. Construction and Building Materials, 2019, 217: 543-556.
[25] GUO Y C, XIE J H, ZHENG W Y, et al. Effects of steel slag as fine aggregate on static and impact behaviours of concrete[J]. Construction and Building Materials, 2018, 192: 194-201.
[26] 过镇海, 张秀琴. 砼受拉应力-变形全曲线的试验研究[J]. 建筑结构学报, 1988, 9(4): 45. GUO Zhenhai, ZHANG Xiuqin. Experimental study on full tensile stress-deformation curve of concrete[J]. Journal of Building Structure, 1988, 9(4): 45.
[27] YANG K H, MUN J H, CHO J H, et al. Stress-Strain model for various unconfined concretes in compression[J]. ACI Materials Journal, 2014, 111(4): 819-826.
[28] 过镇海. 混凝土的强度和本构关系: 原理与应用[M]. 北京: 中国建筑工业出版社, 2004. GUO Zhenhai. Strength and constitutive relationship of concrete: principle and application [M]. Beijing: China Building and Architecture Press, 2004.
[1] 银英姿,魏景涛,泽里罗布,董伟. 基于Wiener退化过程的纤维混凝土抗冻性[J]. 山东大学学报 (工学版), 2025, 55(2): 106-113.
[2] 董伟,朱相茹,王雪松,周梦虎. 氯盐干湿循环下风积沙混凝土微观结构演变[J]. 山东大学学报 (工学版), 2024, 54(4): 115-121.
[3] 张启懿,邹春霞,郭晓松,宋育鑫,郑建庭,赵溢. NaOH改善粉煤灰混凝土微结构及抗风蚀-冻融耐久性能[J]. 山东大学学报 (工学版), 2024, 54(4): 131-140.
[4] 罗靓,晏宇翔,吕辉,张成明. 异形钢管混凝土轴压短柱力学性能[J]. 山东大学学报 (工学版), 2024, 54(3): 103-114.
[5] 王鹏, 黄成, 赵国浩, 张峰. 混凝土单箱三室箱梁水化热温度场及应变场模型试验[J]. 山东大学学报 (工学版), 2024, 54(1): 109-122.
[6] 董伟,周梦虎,王雪松,薛刚,王栋. 碳化-冻融作用对风积沙混凝土氯离子传输的影响[J]. 山东大学学报 (工学版), 2024, 54(1): 123-130.
[7] 潘旭东,李鸿钊,郭焱旭,刘人太,何万里. 海洋环境下注浆加固体的力学性能演化[J]. 山东大学学报 (工学版), 2023, 53(5): 112-120.
[8] 王晓明,朱传超,许航,贺耀北,韩昭,李兆辉,黄春杨. 无内腹板式钢索塔锚固区的力学性能分析[J]. 山东大学学报 (工学版), 2023, 53(3): 50-59.
[9] 赵之仲,柳泓哲,唐亮,杨振宇,王日升. 强化方式与材料对再生粗集料的性能规律分析[J]. 山东大学学报 (工学版), 2023, 53(1): 11-17.
[10] 王旭昊,刘倩倩,李虎成,李程,李鹏,凌一峰. 装配式水泥混凝土路面板空心形式研究与优化[J]. 山东大学学报 (工学版), 2022, 52(4): 139-150.
[11] 刘文杰,杨学英,张波,范志鑫,李成新,杨惠茗,李景龙. 含裂隙无腹筋梁的抗剪承载能力[J]. 山东大学学报 (工学版), 2022, 52(3): 42-50.
[12] 周勇,李召峰,左志武,王川,林春金,张新,姚望. 滨海岩溶注浆充填体性能研究[J]. 山东大学学报 (工学版), 2022, 52(1): 103-110.
[13] 李军伟,徐飞,王兵,高阳. 混凝土不同骨料粒径对声发射检测的影响[J]. 山东大学学报 (工学版), 2021, 51(5): 84-90.
[14] 周术明,颜东煌. 基于裂缝参数的钢筋混凝土预裂梁刚度试验研究[J]. 山东大学学报 (工学版), 2021, 51(1): 53-59.
[15] 徐振,李德明,王彬,詹谷益,张世杰. 硬岩隧道纯钢纤维混凝土管片应用[J]. 山东大学学报 (工学版), 2020, 50(5): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏巍,张艳宁. 基于半监督隐含狄利克雷分配的人脸姿态判别方法[J]. 山东大学学报(工学版), 2011, 41(3): 17 -22 .
[2] 孟祥彬1,姚凯2*,吴庆东3,刘吉山3,窦志刚2. 强夯加固废弃铁矿渣路基的动应力扩散规律实验研究[J]. 山东大学学报(工学版), 2012, 42(1): 87 -92 .
[3] 潘晟旻1,2,钟毅1*,王建华2. 基于改进Canny算子的坯料挤压变形边缘提取[J]. 山东大学学报(工学版), 2013, 43(5): 19 -23 .
[4] 赵建玉,贾磊,朱文兴,杨立才 . 干道交叉口交通信号的模糊控制设计[J]. 山东大学学报(工学版), 2006, 36(1): 46 -50 .
[5] 夏辉1,王华1,陈熙2. 一种基于微粒群思想的蚁群参数自适应优化算法[J]. 山东大学学报(工学版), 2010, 40(3): 26 -30 .
[6] 黄传真1,2,庄新强1,2,邹斌1,2,刘子夜1,2. 汽车覆盖件模具钢高速切削数据库的研究[J]. 山东大学学报(工学版), 2011, 41(5): 9 -12 .
[7] 张新国1,许崇芳1*,王金双1,严纪丛1,韩廷武1,2. 无电感蔡氏电路设计方法与应用[J]. 山东大学学报(工学版), 2010, 40(6): 134 -138 .
[8] 陈文强1,林琛1,2,陈珂3,陈锦秀1,邹权1,2*. 基于GraphLab的分布式近邻传播聚类算法[J]. 山东大学学报(工学版), 2013, 43(5): 13 -18 .
[9] 周海龙,申向东,薛慧君. 小龄期水泥土无侧限抗压强度试验研究[J]. 山东大学学报(工学版), 2014, 44(1): 75 -79 .
[10] 陈冬岩. 基于多信道的MAC层协议在无线传感器网络中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 41 -49 .