您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (1): 109-122.doi: 10.6040/j.issn.1672-3961.0.2022.363

• 土木工程 • 上一篇    下一篇

混凝土单箱三室箱梁水化热温度场及应变场模型试验

王鹏1(),黄成2,赵国浩3,张峰3,*()   

  1. 1. 招商局重庆交通科研设计院有限公司, 重庆 400067
    2. 广西路建工程集团有限公司, 广西 南宁 530001
    3. 山东大学岩土与结构工程研究中心, 山东 济南 250061
  • 收稿日期:2022-11-01 出版日期:2024-02-20 发布日期:2024-02-01
  • 通讯作者: 张峰 E-mail:wangpeng@cmhk.com;zhangfeng2008@mail.sdu.edu.cn
  • 作者简介:王鹏(1973—), 男, 山东邹平人, 高级工程师,博士, 主要研究方向为桥梁结构可靠性与安全性评估。E-mail: wangpeng@cmhk.com

Experiment of the model of hydration heat temperature field and strain field of concrete single box and three chamber girder

Peng WANG1(),Cheng HUANG2,Guohao ZHAO3,Feng ZHANG3,*()   

  1. 1. China Merchants Chongqing Communications Technology Research and Design Institute Co. Ltd., Chongqing 400067, China
    2. Guangxi Road Construction Engineering Group Co. Ltd., Nanning 530001, Guangxi, China
    3. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, Shandong, China
  • Received:2022-11-01 Online:2024-02-20 Published:2024-02-01
  • Contact: Feng ZHANG E-mail:wangpeng@cmhk.com;zhangfeng2008@mail.sdu.edu.cn

摘要:

为研究单箱三室混凝土箱梁水化热温度场及应变场分布规律, 在广西来宾浇筑混凝土箱梁缩尺(1∶2)模型, 埋置148个温度传感器和20个应变传感器, 并布置气象传感器, 通过现场实测数据分析, 得到C60高强混凝土箱梁水化热温度场分布规律。单箱三室箱梁水化热共分为3个阶段: 温升阶段(0~24 h)、快速温降阶段(24~96 h)和平稳温降阶段(96~240 h)。箱梁截面平均温度需179 h才低于入模温度, 说明箱梁水化产生的热量至少需要7 d才能完全消散。全截面温度峰值为浇筑后24 h, 最高区域为梗腋位置处, 最高温度达90.2 ℃, 此时顶板最大横向温差达32.2 ℃。受分层浇筑影响, 浇筑后12 h, 边腹板最大竖向温差达40.1 ℃, 现场可观察到施工冷缝。梗腋处温度场分布复杂, 梗腋最大横向温差为22.5 ℃, 最大竖向温差为29.9 ℃, 梗腋表面横向收缩应变小于竖向。梗腋外表面温度较低且受模板约束, 应变小于梗腋内部, 有6个梗腋存在竖向开裂风险, 最大收缩拉应力为抗拉强度的1.51倍。

关键词: 水化热, 试验模型, 温度场, 应变场, 混凝土箱梁

Abstract:

In order to study the distribution law of concrete hydration heat temperature field and strain field in concrete single box and three chamber girder, a concrete box girder scaled-down(1∶2) model was cast in Laibin, 148 temperature sensors and 20 strain sensors were embedded in the concrete. Meteorological sensors were arranged, and the distribution law of hydration heat field of C60 high-strength concrete box girder was obtained through the analysis of field actual measurement data. The research results showed that the hydration heat of single-box three-compartment box girder was divided into three stages: temperature rise stage (0-24 h), rapid temperature drop stage (24-96 h) and smooth temperature drop stage (96-240 h). The average temperature of the box girder cross-section needed 179 h before it was lower than the entering temperature, the heat generated by the hydration of the box girder needed at least 7 d to be completely dissipated; the peak temperature of the whole cross-section was 24 h after pouring, and the highest area was at the pedicle axillary position, with the highest temperature reaching 90.2 ℃, and the maximum horizontal temperature difference of the top plate reached 32.2 ℃ at this time. Influenced by the layered pouring, the maximum vertical temperature difference of the side web reached 12 h after pouring 40.1 ℃, and the construction cold joints could be observed on the site. The temperature field distribution at the stalk axle was complicated, and the maximum transverse temperature difference at the stalk axle was 22.5 ℃ and the maximum vertical temperature difference was 29.9 ℃, and the transverse shrinkage strain at the surface of the stalk axil is smaller than the vertical one. The strain on the outer surface of the stalk axil is lower and constrained by the template, so the strain is smaller than that inside the stalk axil. it was calculated that there was a risk of vertical cracking in six pedicle axils, and the maximum shrinkage tensile stress was 1.51 times of the tensile strength.

Key words: heat of hydration, test model, temperature field, strain field, concrete box girder

中图分类号: 

  • U441.5

图1

模型结构尺寸图"

图2

传感器布置图"

图3

现场模型示意图"

表1

混凝土配合比和热工参数"

项目 每m3用量/kg 比热/(kJ·(kg·℃)-1) ω/%
水泥 422.00 0.46 17.5
725.00 4.19 6.4
1 044.00 0.70 30.1
153.00 0.80 43.4
粉煤灰 53.00 0.92 2.2
减水剂 7.92 0.3

图4

水化热阶段气象条件"

图5

截面平均温度对比图"

图6

二维温度场云图"

图7

箱梁典型位置水化热温度时程曲线"

图8

腹板沿宽度方向水化热分布"

表2

腹板水化热温度变化表"

边腹板温度 中腹板温度
89.40 88.40
83.68 82.78
77.96 77.16
72.24 71.54
66.52 65.92
60.80 60.30
55.08 54.68
49.36 49.06
43.64 43.44
37.92 37.82
32.20 32.20

图9

腹板水化热期间竖向温度分布"

图10

箱梁横向温度分布曲线"

图11

梗腋区域划分示意图"

图12

梗腋-截面温度时程曲线"

图13

温度梯度分层示意图"

图14

梗腋部位横向温差分布"

图15

梗腋部位竖向温度梯度分布"

图16

梗腋应变传感器布置图"

图17

梗腋各部位截面测点应变时程曲线"

图18

顶板梗腋表面测点应变分布曲线"

图19

底板梗腋内部测点竖向应变时程曲线"

图20

收缩应力计算图示"

图21

梗腋处早龄期应力"

图22

底板梗腋处早龄期裂缝"

图23

有限元计算云图"

图24

土工布影响效果"

图25

浇筑温度影响效果"

1 孔祥谦. 热应力有限单元法分析[M]. 上海: 上海交通大学出版社, 1999.
2 戴伟. 大跨度连续刚构桥施工阶段温度效应研究[D]. 长沙: 中南大学, 2014.
DAI Wei. Study on the temperature effect in the construction phase of large span continuous rigid bridge[D]. Changsha: Central South University, 2014.
3 CHOI Seongcheol , CHA S W , OH B H , et al. Thermo-hygro-mechanical behavior of early-age concrete deck in composite bridge under environmental loadings: Part 1: temperature and relative humidity[J]. Materials and Structures, 2011, 44 (7): 1325- 1346.
doi: 10.1617/s11527-011-9751-8
4 FLAGA K, KLEMCZAK B, JEDREZEJEWSKA A. Early-age thermal-shrinkage crack formation in bridge abutments. Experiences and modelling[C]//Fib Symposium. Tel Aviv, Israel: Agnieszka Jędrzejewska, 2013.
5 LEE Yun , KIM J K . Numerical analysis of the early age behavior of concrete structures with a hydration based microplane model[J]. Computers & Structures, 2009, 87 (17-18): 1085- 1101.
6 HUANG Yonghui , LIU Guoxing , HUANG Shiping , et al. Experimental and finite element investigations on the temperature field of a massive bridge pier caused by the hydration heat of concrete[J]. Construction and Building Materials, 2018, 192 (12): 240- 252.
7 KIM Jinkeun , KIM Kookhan , YANG Kyoung . Thermal analysis of hydration heat in concrete structures with pipe-cooling system[J]. Computers & Structures, 2001, 79 (2): 163- 171.
8 王解军, 李辉, 卢二侠. 大体积混凝土桥墩水化热温度场的数值分析[J]. 中南林业科技大学学报, 2007, 27 (1): 124- 128.
WANG Jiejun , LI Hui , LU Erxia . Numerical analysis of hydration heat temperature field of mass concrete pier[J]. Journal of Central South University of Forestry and Technology, 2007, 27 (1): 124- 128.
9 LI Fangyuan , SHEN Yin . Full-scale test of the hydration heat and the curing method of the wet joints of a precast segmental pier of a bridge[J]. European Journal of Environmental and Civil Engineering, 2017, 21 (3): 348- 370.
doi: 10.1080/19648189.2015.1119063
10 GILLILANG J A , DILGER W H . Monitoring concrete temperature during construction of the Confederation Bridge[J]. Canadian Journal of Civil Engineering, 1997, 24 (6): 941- 950.
11 陈王. 早期混凝土性态变化的试验研究与数值模拟[D]. 天津: 天津大学, 2014.
12 ABID S R . Three-dimensional finite element temperature gradient analysis in concrete bridge girders subjected to environmental thermal loads[J]. Cogent Engineering, 2018, 5 (1): 1- 15.
13 GU Bin , ZHOU Fengyi , GAO Wang , et al. Temperature gradient and its effect on long-span prestressed concrete box girder bridge[J]. Advances in Civil Engineering, 2020, 2020 (9): 1- 18.
14 DONG Wei , LIU Yinghua , XIANG Zhihai . A numerical method for estimating the maximal temperature gradients reached in fire-damaged concrete structures based on the parameter identification[J]. Computer Modeling in Engineering & Sciences, 2009, 46 (1): 77- 106.
15 TONG Yifei , GE Zhihao , ZHOU Xingchen , et al. Research on welding deformation for box girder of bridge crane based on thermal elasto-plastic theory[J]. Advances in Mechanical Engineering, 2018, 10 (5): 1- 12.
16 XU Hanzheng , YAN Xiaofeng . Numerical analysis of temperature influence on transverse cracks in concrete box-girder bridges[J]. Mathematical Problems in Engineering, 2020, 2020 (1): 1- 11.
17 LUKAS Krkoška, MORAVCIK Martin. The measurement of thermal changes on concrete box girder bridge[C]//MATEC Web of Conferences. Baghdad, Iraq: EDP Sciences, 2016.
18 GONG Yafeng, WANG Luning, BI Haipeng, et al. Hydration heat stress change rule in the construction of segment No. 0 of PC box girder bridge[C]//Fourth International Conference on Transportation Engineering. Chengdu, China: Southwest Jiaotong University, 2013.
19 XIAO Xiangnan , PENG Yunyong , LUO Guijun . Study on hydration heat of concrete channel-box girder[J]. Thermal Science, 2021, 25 (2A): 967- 975.
20 HOUSSEIN Nasteho A , LIU Ronggui , GU Bin , et al. Study on the hydration heat temperature field of large-scale prestressed concrete box girder[J]. IOSR Journal of Engineering, 2018, 8 (1): 19- 26.
21 ZHANG Ning , ZHOU Xin , LIU Yongjian , et al. In-situ test on hydration heat temperature of box girder based on array measurement[J]. China Civ Eng J, 2019, 52, 76- 86.
22 LIU Jiang , LIU Yongjian , ZHANG Ning , et al. Research on temperature action and cracking risk of steel-concrete composite girder during the hydration process[J]. Archives of Civil and Mechanical Engineering, 2020, 20 (2): 1- 21.
23 THURSTON Stuart. Thermal stresses in concrete structures[D]. Canterbury: University of Canterbury, 1978.
24 侯东伟, 张君. 早龄期混凝土全变形曲线的试验测量与分析[J]. 建筑材料学报, 2010, (5): 613- 619.
HOU Dongwei , ZHANG Jun . Experimental measure-ment and analysis of full deformation curve of early age concrete[J]. Journal of Construction Materials, 2010, (5): 613- 619.
25 中华人民共和国住房和城乡建设部. 中华人民共和国国家标准.大体积混凝土施工标准: JB50496—2018[M]. 北京: 中国计划出版社, 2018.
26 ALTOUBAT S A , LANGE D A . Creep, shrinkage, and cracking of restrained concrete at early age[J]. ACI Materials Journal, 2001, 98 (4): 323- 331.
27 朱伯芳. 大体积混凝土温度应力与控制[M]. 北京: 中国水利水电出版社, 2012.
28 王铁梦. 工程结构裂缝控制[M]. 北京: 中国建筑工业出版社, 1997.
[1] 郭豪彦,王振军,张海宝,史文涛,况栋梁. 多因素作用下水泥乳化沥青胶浆性能特征及机理[J]. 山东大学学报 (工学版), 2023, 53(1): 25-31.
[2] 魏本刚,郭若琛,黄华,王祯,刘鹏程,张钰莹,李可军,娄杰. 分体冷却变压器的有限元二维热学模型仿真与分析[J]. 山东大学学报(工学版), 2017, 47(6): 63-69.
[3] 高桂波1, 钱春香2, 岳钦艳3, 王勇威1, 鲁统卫1. 预填埋相变材料对混凝土水化热温升的降低效果[J]. 山东大学学报(工学版), 2011, 41(6): 91-96.
[4] 李守凯,张峰,李术才*,邵冬亮. 施工定位误差对竖向预应力损失的影响研究[J]. 山东大学学报(工学版), 2011, 41(3): 101-105.
[5] 孙国富1,2,李术才2,路为2,陈雷3. 复合胶凝材料钢管混凝土拱肋水化过程截面温度场试验及数值模拟分析[J]. 山东大学学报(工学版), 2011, 41(3): 106-111.
[6] 王海源1,2,章龙3,张乐文1*,张峰1. 预防连续箱梁施工裂缝的温度监测与有限元分析[J]. 山东大学学报(工学版), 2011, 41(3): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[8] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[9] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[10] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .