您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (2): 70-76.doi: 10.6040/j.issn.1672-3961.0.2022.086

• • 上一篇    下一篇

基于Affix-Attention的命名实体识别语义补充方法

宋佳芮1,2,陈艳平1,2*,王凯1,2,黄瑞章1,2,秦永彬1,2   

  1. 1.公共大数据国家重点实验室, 贵州 贵阳 550025;2.贵州大学计算机科学与技术学院, 贵州 贵阳 550025
  • 收稿日期:2022-03-04 出版日期:2023-04-22 发布日期:2023-04-21
  • 作者简介:宋佳芮(1999— ),女,山西大同人,硕士研究生,主要研究方向为自然语言处理. E-mail:gs.jrsong20@gzu.edu.cn. *通信作者简介:陈艳平(1980— ),男,贵州安顺人,教授,博士,主要研究方向为自然语言处理. E-mail:Ypench@gmail.com
  • 基金资助:
    国家自然科学基金资助项目(62166007)

Semantic supplement method for named entity recognition based on Affix-Attention

SONG Jiarui1,2, CHEN Yanping1,2*, WANG Kai1,2, HUANG Ruizhang1,2, QIN Yongbin1,2   

  1. 1. State Key Laboratory of Public Big Data, Guiyang 550025, Guizhou, China;
    2. College of Computer Science and Technology, Guizhou University, Guiyang 550025, Guizhou, China
  • Received:2022-03-04 Online:2023-04-22 Published:2023-04-21

摘要: 针对现有命名实体识别方法存在的语义信息获取不全面问题,提出基于Affix-Attention的命名实体识别语义补充方法。将句子和句子中每个单词对应的词缀输入到编码层,使用Bi-LSTM提取上下文特征。在编码层设计特征融合模块、建模文本特征与词缀特征的对应关系,使用Affix-Attention同时关注文本信息和词缀信息进行语义补充。解码层使用CRF层得到目标序列。在生物医学领域的JNLPBA-2004和BC2GM基准数据集上的试验结果综合评价指标F1达到81.73%、84.73%;在公共数据集CONLL-2003中试验结果综合评价指标F1达到91.35%。试验结果表明,本研究方法能够有效获取词的内部语义特征,融合文本信息和词缀信息,达到语义补充的效果,提升命名实体识别的性能。

关键词: 命名实体识别, 语义补充, 注意力机制, 特征融合, 深度学习

中图分类号: 

  • TP301
[1] 刘浏, 王东波. 命名实体识别研究综述[J]. 情报学报, 2018, 37(3): 329-340. LIU Liu, WANG Dongbo. A review of research on named entity recognition[J]. Journal of Information, 2018, 37(3): 329-340.
[2] 孙镇, 王惠临. 命名实体识别研究进展综述[J]. 现代图书情报技术, 2010(6): 42-47. SUN Zhen, WANG Huilin. A review of the research progress of named entity recognition[J]. Modern Library and Lnformation Technology, 2010(6): 42-47.
[3] 江千军, 桂前进, 王磊,等. 命名实体识别技术研究进展综述[J]. 电力信息与通信技术, 2022, 20(2): 15-24 JIANG Qianjun, GUI Qianjin, WANG Lei, et al. A review of the research progress of named entity recognition technology[J] Power Information and Communication Technology, 2022, 20(2): 15-24.
[4] CHITICARIU L, KRISHNAMURTHY R, LI Y, et al. Domain adaptation of rule-based annotators for named-entity recognition tasks[C] //Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Piscataway, USA: IEEE Computer Society, 2010: 1002-1012.
[5] SHEN D, ZHANG J, ZHOU G, et al. Effective adaptation of hidden markov model-based named entity recognizerfor biomedical domain[C] //Proceedings of the ACL 2003 Workshop on Natural Language Processing in Biomedicine. Sapporo, Japan: ACL, 2003: 49-56.
[6] ZHANG J, SHEN D, ZHOU G, et al. Enhancing hmm-based biomedical named entity recognition by studying special phenomena[J]. Journal of Biomedical Informatics, 2004, 37(6): 411-422.
[7] HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL].(2015-08-09)[2021-08-07]. https://arxiv.org/pdf/1508.01991.
[8] SANG E F, DE Meulder F. Introduction to the CoNLL-2003 shared task: language-independent name dentity recognition[EB/OL].(2003-01-05)[2021-09-12].http://www.ling.helsinki.fi/kit/2008s/clt350/docs/CoNLL-2003-Entities.
[9] JU M, MIWA M, ANANIADOU S. A neural layered model for nested named entity recognition[C] //Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Volume 1(Long Papers). New Orleans, Louisiana: ACL, 2018: 1446-1459.
[10] SMITH L, TANABE L K, KUO C J, et al. Overview of BioCreative II gene mention recognition[J]. Genome Biology, 2008, 9(2): 1-19.
[11] SETTLES B. Biomedical named entity recognition using conditional random fields and rich feature sets[C] //Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications(NLPBA/BioNLP). Geneva, Switzerland: [s.n.] , 2004: 107-110.
[12] WANG X, YANG C, GUAN R. A comparative study for biomedical named entity recognition[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(3): 373-382.
[13] ZHOU G D, SU J. Exploring deep knowledge resources in biomedical name recognition[C] //Proceedings of the International Joint: Workshop on Natural Language Processing in Biomedicine and its Applications(NLPBA/BioNLP). Geneva, Switzerland: [s.n.] , 2004: 99-102.
[14] LIAO Z, WU H. Biomedical named entity recognition based on skip-chain Crfs[C] //2012 International Conference on Industrial Control and Electronics Engin-eering. Piscataway, USA: IEEE Computer Society, 2012: 1495-1498.
[15] TANG B, CAO H, WANG X, et al. Evaluating word representation features in biomedical named entity recognition tasks[J]. BioMed Research International, 2014: 1-6.
[16] CHANG F X, GUO J, XU W R, et al. Application of word embeddings in biomedical named entity recognition tasks[J]. Journal of Digital Information Management, 2015, 13(5): 321-327.
[17] YAO L, LIU H, LIU Y, et al. Biomedical named entity recognition based on deep neutral network[J]. Int J Hybrid Inf Technol, 2015, 8(8): 279-288.
[18] LI L, JIN L, JIANG Y, et al. Recognizing biomedical named entities based on the sentence vector/twin word embedding conditioned bidirectional LSTM[C] // Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. Yantai, China: Springer International Publishing, 2016: 165-176.
[19] LI L, GUO Y K. Biomedical named entity recognition with CNN-BLSTM-CRF[J]. Journal of Chinese Information Processing, 2018, 32(1): 116-122.
[20] NING G, BAI Y. Biomedical named entity recognition based on Glove-BLSTM-CRF model[J]. Journal of Computational Methods in Sciences and Engineering, 2021, 21(1), 125-133.
[21] XU Y, HUANG H, FENG C, et al. A supervised multi-head self-attention network for nested named entity recognition[C] //Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans, Louisiana: ACL, 2021, 35(16): 14185-14193.
[22] LIU T, YAO J G, LIN C Y. Towards improving neural named entity recognition with gazetteers[C] //Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: ACL, 2019: 5301-5307.
[23] LE A, MORITA H, IWAKURA T. Learning entity-likeness with multiple approximate matches for biomedical NER[C] //Proceedings of the International Conference on Recent Advances in Natural Language Processing(RANLP 2021).[S.l.] : [s.n.] ,2021: 1040-1049.
[24] KURU O, CAN O A, YURET D. Char NER: Character-level named entity recognition[C] // Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee, 2016: 911-921.
[25] SHEN Y, YUN H, LIPTON Z C, et al. Deep active learning for named entity recognition[EB/OL].(2018-02-04)[2021-09-10].https://arxiv.org/pdf/1707.05928.
[26] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing(almost)from scratch[J]. Journal of Machine Learning Research, 2011, 12(ARTICLE):2493-2537.
[27] STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[EB/OL].(2017-07-22)[2021-09-13]. https://arxiv.org/pdf/1702.02098.
[28] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[EB/OL].(2016-04-07)[2021-09-13]. https://arxiv.org/pdf/1603.01360.
[29] XU M, JIANG H. A FOFE-based local detection approach for named entity recognition and mention detection[EB/OL].(2016-04-07)[2021-09-17]. https://arxiv.org/pdf/1603.01360.
[30] YANG Z, SALAKHUTDINOV R, COHEN W. Multi-task cross-lingual sequence tagging from scratch[EB/OL].(2016-08-09)[2021-09-22]. https://arxiv.org/pdf/1603.06270.
[31] MA X, HOVY E. End-to-end sequence labeling via bi-directional lstm-cnns-crf[EB/OL].(2016-05-29)[2021-09-25]. https://arxiv.org/pdf/1603.01354.
[1] 刘方旭,王建,魏本征. 基于多空间注意力的小儿肺炎辅助诊断算法[J]. 山东大学学报 (工学版), 2023, 53(2): 135-142.
[2] 刘行,杨璐,郝凡昌. 基于多特征融合的手指静脉图像检索方法[J]. 山东大学学报 (工学版), 2023, 53(2): 118-126.
[3] 袁钺,王艳丽,刘勘. 基于空洞卷积块架构的命名实体识别模型[J]. 山东大学学报 (工学版), 2022, 52(6): 105-114.
[4] 武新章,梁祥宇,朱虹谕,张冬冬. 基于CEEMDAN-GRA-PCC-ATCN的短期风电功率预测[J]. 山东大学学报 (工学版), 2022, 52(6): 146-156.
[5] 李旭涛,杨寒玉,卢业飞,张玮. 基于深度学习的遥感图像道路分割[J]. 山东大学学报 (工学版), 2022, 52(6): 139-145.
[6] 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88.
[7] 侯月武,刘兆英,张婷,李玉鑑,孙长明. 基于改进的DUNet遥感图像道路提取[J]. 山东大学学报 (工学版), 2022, 52(4): 29-37.
[8] 杨霄,袭肖明,李维翠,杨璐. 基于层次化双重注意力网络的乳腺多模态图像分类[J]. 山东大学学报 (工学版), 2022, 52(3): 34-41.
[9] 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98.
[10] 蒋桐雨,陈帆,和红杰. 基于非对称U型金字塔重建的轻量级人脸超分辨率网络[J]. 山东大学学报 (工学版), 2022, 52(1): 1-8, 18.
[11] 吴建清,宋修广. 同步定位与建图技术发展综述[J]. 山东大学学报 (工学版), 2021, 51(5): 16-31.
[12] 梁晔,马楠,刘宏哲. 图像依赖的显著图融合方法[J]. 山东大学学报 (工学版), 2021, 51(4): 1-7.
[13] 杨修远,彭韬,杨亮,林鸿飞. 基于知识蒸馏的自适应多领域情感分析[J]. 山东大学学报 (工学版), 2021, 51(3): 15-21.
[14] 柴庆发,孙守晶,邱吉福,陈明,魏振,丛伟. 气象灾害条件下电网应急物资预测方法[J]. 山东大学学报 (工学版), 2021, 51(3): 76-83.
[15] 曹春红,段鸿轩,曹玲,张乐乐,胡凯,肖芬. 基于多级特征级联的遥感图像实时语义分割[J]. 山东大学学报 (工学版), 2021, 51(2): 19-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨国辉1,孙晓瑜1,2,椿范立1. 应用沸石胶囊催化剂制备生物汽油(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 92 -97 .
[2] 赵伟,艾洪奇. pH对Aβ42小纤维的结构影响[J]. 山东大学学报(工学版), 2018, 48(2): 134 -138 .
[3] 钟倩倩,岳钦艳*,李倩,李颖,许醒,高宝玉. 改性麦草秸秆对活性艳红的吸附动力学研究[J]. 山东大学学报(工学版), 2011, 41(1): 133 -139 .
[4] 何东之, 张吉沣, 赵鹏飞. 不确定性传播算法的MapReduce并行化实现[J]. 山东大学学报(工学版), 0, (): 22 -28 .
[5] 刘云,邱晓国 . 内插TOC系数法测定水体中COD研究[J]. 山东大学学报(工学版), 2007, 37(4): 108 -117 .
[6] 顿月芹 闵越 袁建生. 阵列侧向测井正演响应的特性分析[J]. 山东大学学报(工学版), 2010, 40(1): 121 -125 .
[7] 林彦,魏东 . 铸钢空心球管节点的破坏机理分析与承载力影响因素[J]. 山东大学学报(工学版), 2006, 36(3): 103 -107 .
[8] 郑桂兰,马庆雷,潘秀华 . 旧水泥混凝土路面沥青加铺层结构设计方法研究[J]. 山东大学学报(工学版), 2007, 37(4): 93 -97 .
[9] 吉兴全,韩国正,李可军,傅荣荣,朱仰贺. 基于密度的改进K均值聚类算法在配网区块划分中的应用[J]. 山东大学学报(工学版), 2016, 46(4): 41 -46 .
[10] 徐振,李德明,王彬,詹谷益,张世杰. 硬岩隧道纯钢纤维混凝土管片应用[J]. 山东大学学报 (工学版), 2020, 50(5): 44 -49 .