山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (2): 19-25.doi: 10.6040/j.issn.1672-3961.0.2020.225
Chunhong CAO(),Hongxuan DUAN*(),Ling CAO,Lele ZHANG,Kai HU,Fen XIAO
摘要:
针对遥感图像语义分割中存在的分割耗时长、分割小目标不准确的问题,提出基于多级特征级联的高分辨率遥感图像快速语义分割模型(multi-level feature cascade network, MFCNet)。该模型主要由特征编码、特征融合以及目标细化3部分组成。特征编码对输入的不同分辨率图像用不同量级主干网络进行特征提取,由于低分辨率图像分辨率较低,使用重量级的主干网络在增加较少参数的情况下可以获取丰富的语义信息,而中、高分辨图像分辨率较大,使用轻量级主干网络既减少参数量又可获取全局信息。中等和低分辨率的编码使用权重和计算共享的方式,进一步减少模型参数,降低计算复杂性。特征融合对来自不同分支的特征进行融合,以获取不同尺度的信息。目标细化采用残差校正对融合后的特征和编码部分的特征进行融合校正,以恢复图像的空间细节信息,使分割更加准确。该模型可以端到端的方式有效地工作,试验验证所提模型在遥感图像语义分割中的有效性,在模型复杂性和精度上取得较好的平衡。
中图分类号:
1 | 刘航, 汪西莉. 基于注意力机制的遥感图像分割模型[J]. 激光与光电子学进展, 2020, 57 (4): 170- 180. |
LIU Hang , WANG Xili . Remote sensing image segmentation model based on attention mechanism[J]. Laser & Optoelectronics Progress, 2020, 57 (4): 170- 180. | |
2 |
LIU C , YUEN J , TORRALBA A . Nonparametric scene parsing via label transfer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12): 2368- 2382.
doi: 10.1109/TPAMI.2011.131 |
3 | LONG J , SHELHAMER E , DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 39 (4): 640- 651. |
4 | BADRINARAYANAN V , KENDALL A , CIPOLLA R . Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39 (12): 2481- 2495. |
5 | ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017: 2881-2890. |
6 | CHEN L, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[C]// Proceedings of the International Conference on Learning Representations (ICLR). San Diego, USA: IEEE, 2015: 1-14. |
7 |
CHEN L , PAPANDREOU G , KOKKINOS I , et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184 |
8 | CHEN L, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018: 801-818. |
9 | NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 1520-1528. |
10 | MEHTA S, RASTEGARI M, SHAPIRO L, et al. Espnetv2: a light-weight, power efficient, and general purpose convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recogintion (CVPR). California, USA: IEEE, 2019: 9190-9200. |
11 | WANG Y, ZHOU Q, LIU J, et al. Lednet: a lightweight encoder-decoder network for real-time semantic segmentation[C]//Proceedings of the IEEE International Conference on Image Processing (ICIP). Taipei, China: IEEE, 2019: 1860-1864. |
12 | YU C, WANG J, PENG C, et al. Bisenet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018: 334-349. |
13 | LI H, XIONG P, FAN H, et al. Dfanet: deep feature aggregation for real-time semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recogintion (CVPR). California, USA: IEEE, 2019: 9522-9531. |
14 | HE T, SHEN C, TIAN Z, et al. Knowledge adaptation for efficient semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). California, USA: IEEE, 2019: 578-587. |
15 | ZHAO H, QI X, SHEN X, et al. Icnet for real-time semantic segmentation on high-resolution images[C]// Proceedings of the European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018: 405-420. |
16 | ZHUANG J, YANG J, GU L, et al. Shelfnet for fast semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea: IEEE, 2019: 847-856. |
17 | MARIUS C, MOHAMED O, SEBASTIAN R, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recogintion (CVPR). Las Vegas, USA: IEEE, 2016: 3213-3223. |
18 | LIN T, MICHAEL M, SERGE B, James Hays, et al. Microsoft coco: common objects in context[C]// Proceedings of the European Conference on Computer Vision (ECCV). Zurich, Switzerland: Springer, 2014: 740-755. |
19 | OLAF R, PHILIPP F, THOMAS B. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCA). Munich, Germany: Springer, 2015: 234-241. |
20 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016: 770-778. |
[1] | 刘冬兰,刘新,陈剑飞,王文婷,张昊,马雷,李冬. 基于物理不可克隆函数的电网NB-IoT端到端安全加密方案[J]. 山东大学学报 (工学版), 2020, 50(1): 63-71. |
[2] | 杨煦,陈辉,林游思,屠长河. 飞行蝙蝠标记自动提取与追踪算法[J]. 山东大学学报 (工学版), 2019, 49(2): 67-73. |
[3] | 范君,业巧林,业宁. 基于改进的有监督无参局部保持投影算法的人脸识别[J]. 山东大学学报 (工学版), 2019, 49(1): 10-16. |
[4] | 王国新,陈凤东,刘国栋. 基于彩色伪随机编码结构光特征提取方法[J]. 山东大学学报 (工学版), 2018, 48(5): 55-60. |
[5] | 叶子云,杨金锋. 一种基于加权图模型的手指静脉识别方法[J]. 山东大学学报(工学版), 2018, 48(3): 103-109. |
[6] | 张振月,李斐,江铭炎. 基于低秩表示投影的无监督人脸特征提取[J]. 山东大学学报(工学版), 2018, 48(1): 15-20. |
[7] | 于青民,李晓磊,翟勇. 基于改进EMD和数据分箱的轴承内圈故障特征提取方法[J]. 山东大学学报(工学版), 2017, 47(3): 89-95. |
[8] | 郭超,杨燕,江永全,宋祎. 基于多视图分类集成的高铁工况识别[J]. 山东大学学报(工学版), 2017, 47(1): 7-14. |
[9] | 钟智彦,文志强, 张潇云,叶德刚. 基于半色调图像的邻域相似性描述子方法[J]. 山东大学学报(工学版), 2016, 46(3): 58-64. |
[10] | 肖乔,裴继红,王荔霞,龚志成. 基于多通道Gabor滤波模糊融合的遥感图像舰船检测[J]. 山东大学学报 (工学版), 2015, 45(5): 29-35. |
[11] | 卢丹, 周以齐. 基于EEMD和CWT的挖掘机座椅振动分析[J]. 山东大学学报(工学版), 2015, 45(3): 58-64. |
[12] | 于海晶1,2, 李桂菊1*. 基于差分盒维数的彩色烟雾图像识别[J]. 山东大学学报(工学版), 2014, 44(1): 35-40. |
[13] | 李慧1,2,胡云1,3,李存华1. 基于粗糙集理论的瓦斯灾害信息特征提取技术[J]. 山东大学学报(工学版), 2012, 42(5): 91-95. |
[14] | 曹红根1,袁宝华1,朱辉生2. 结合对比度信息与LBP的分块人脸识别[J]. 山东大学学报(工学版), 2012, 42(4): 29-34. |
[15] | 张思懿1,2,王士同1*. 核化空间深度间距的特征提取方法[J]. 山东大学学报(工学版), 2012, 42(3): 45-51. |
|