山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (4): 1-7.doi: 10.6040/j.issn.1672-3961.0.2020.266
• 机器学习与数据挖掘 • 下一篇
Ye LIANG1,2(),Nan MA2,Hongzhe LIU1
摘要:
提出基于脊回归的显著图融合方法以获得更好的检测效果。在训练集中寻找待检测图像的近邻图像集,对近邻图像集采用脊回归方法对多种显著性检测方法的融合系数进行估计,进而对不同检测方法的显著图进行融合。该方法充分考虑了检测方法的差异性,很好的解决检测图像在没有基准二值标注下显著图的融合问题。试验采用流行的显著性数据集和显著性检测方法,本研究方法在ECSSD数据集上的AUC为0.911,在HKU-IS数据集上的AUC为0.987, 在DUT-OMRON数据集上的AUC为0.953,结果验证了融合方法的有效性。
中图分类号:
1 | KOCH Christof , ULLMAN Shimon . Shifts in selective visual attention: towards the underlying neural circuitry[J]. Human Neurbiology, 1985, 4 (4): 219- 227. |
2 |
ITTI Laurent , KOCH Christof , Niebur Ernst . A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (11): 1254- 1259.
doi: 10.1109/34.730558 |
3 |
CHENG Mingming , ZHANG Guoxin , MITRA Niloy J , et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 569- 582.
doi: 10.1109/TPAMI.2014.2345401 |
4 | SHEN Xiaohui, WU Ying. A unified approach to salient object detection via low rank matrix Recovery[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Providence, America: IEEE Press, 2012: 853-860. |
5 | CHENG Mingming, WARRELL Jonathan, LIN Wenyan, et al. Efficient salient region detection with soft image abstraction[C]//Proceedings of IEEE International Conference on Computer Vision. Sydney, Australia: IEEE Press, 2013: 1529-1536. |
6 | YAN Qiong, XU Li, SHI Jianping, et al. Hierarchical saliency detection[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Portland, America: IEEE Press, 2013: 1155-1162. |
7 | MARGOLIN Ran, TAL Ayellet, ZELNIKMANOR Lihi. What makes a patch distinct[C]// Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Portland, America: IEEE Press, 2013: 1139-1146. |
8 | JUDD Tilke M, EHINGER Krista, DURAND Frédo, et al. Learning to predict where humans look[C]//Proceedings of IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE Press, 2009: 2106-2113. |
9 | BORJI Ali. Boosting bottom-up and top-down visual features for saliency estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Rhode Island, America: IEEE Press, 2012, 157(10): 438-445. |
10 | CHENG Mingming, LIU Yun, LIN Wenyan, et al. Bing: binarized normed gradients for objectness estimation at 300fps[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, America: IEEE Press, 2014: 3286-3293. |
11 |
WANG Jingdong , JIANG Huaizu , YUAN Zejian , et al. Salient object detection: A discriminative regional feature integration approach[J]. International Journal of Computer Vision, 2017, 123 (2): 251- 268.
doi: 10.1007/s11263-016-0977-3 |
12 | WEI Yichen, WEN Fang, ZHU Wangjiang, et al. Geodesic saliency using background priors[C]//Proceedings of the European Conference on Computer Vision. Firenze, Italy: Springer, 2012: 29-42. |
13 | MAI Long, NIU Yuzhen, LIU Feng. Saliency aggregation: a data driven approach[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Portland, America: IEEE Press, 2013: 1131-1138. |
14 | LU Huchuan, RUAN Xiang, YANG Minghsuan. Deep networks for saliency detection via local estimation and global search[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Boston, America: IEEE Press, 2015: 3183-3192. |
15 | LI Guanbin, YU Yizhou. Visual saliency based on multiscale deep features[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, America: IEEE Press, 2015: 5455-5463. |
16 | ZHAO Rui, OUYANG Wanli, LI Hongsheng, et al. Saliency detection by multi-context deep learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, America: IEEE Press, 2015: 1265-1274. |
17 | ZHANG Pingping, WANG Dong, LU Huchuan, et al. Amulet: aggregating multi-level convolutional features for salient object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Venice, Italy: IEEE Press, 2017: 202-211. |
18 | HOU Qibin, CHENG Mingming, HU Xiaowei, et al. Deeply supervised salient object detection with short connection[C]// Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Hawai, America: IEEE Press, 2017: 3203-3212. |
19 | HU Xiaowei, ZHU Lei, QIN Jing, et al. Recurrently aggregating deep features for salient object detection[C]//Proceedings of Thirty-Second AAAI Conference on Artificial Intelligence. Louisiana, America: AAAI Press, 2018: 6943-6950. |
20 | LIU Jiangjiang, HOU Qibin, CHENG Mingming, et al. A simple pooling-based design for real-time salient object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. California, America: IEEE Press, 2019: 3917-3926. |
21 | QIN Xuebin, ZHANG Zichen, HUANG Chenyang, et al. BASNet: boundary-aware salient object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Angeles, America: IEEE Press, 2019: 7479-7489. |
22 | MAI Long, LIU Feng. Comparing salient object detection results without ground truth[C]//Proceedings of European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014: 76-91. |
23 | LI Guanbin, YU Yizhou. Deep contrast learning for salient object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, America: IEEE Press, 2016: 478-487. |
24 | LEE Gayoung, TAI Yuwing, KIM Junmo. Deep saliency with encoded low level distance map and high level features[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, America: IEEE Press, 2016: 660-668. |
25 |
LI Xi , ZHAO Liming , WEI Lina , et al. Deep saliency: multi-task deep neural network model for salient object detection[J]. IEEE Transactions on Image Processing, 2016, 25 (8): 3919- 3930.
doi: 10.1109/TIP.2016.2579306 |
26 | JIANG Bowen, ZHANG Lihe, LU Huchuan, et al. Saliency detection via absorbing markov chain[C]//Proceedings of IEEE International Conference on Computer Vision. Sydney, Australia: IEEE Press, 2013: 1665-1672. |
27 | YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Portlan, America: IEEE Press, 2013: 3166-3173. |
28 | QIN Yao, LU Huchuan, XU Yiqun. Saliency detection via cellular automata[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, America: IEEE Press, 2015: 110-119. |
29 | ZHANG Jianming, SCLAROFF Stan, LIN Zhe, et al. Minimum barrier salient object detection at 80 FPS[C]//Proceedings of IEEE International Conference on Computer Vision. Santiago, Chile: IEEE Press, 2015: 1404-1412. |
30 | MARGOLIN Ran, ZELNIKMANOR Lihi, TAL Ayellet. How to evaluate foreground maps?[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbu, America: IEEE Press, 2014: 248-255. |
31 | FAN Dengping, CHENG Mingming, LIU Yun. Structure- measure: a new way to evaluate foreground maps[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE Press, 2017: 4548-4557. |
32 | FAN Dengping, GONG Cheng, CAO Yang, et al. Enhanced-alignment measure for binary foreground map evaluation[C]//Proceedings of the International Joint Conference on Artificial Intelligence. Stockholm, Sweden: IJCAI Press, 2018: 698-704. |
[1] | 任永峰,董学育. 基于自适应流形相似性的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2017, 47(3): 56-62. |
[2] | 翟继友,周静波,任永峰,王志坚. 基于背景和前景交互传播的图像显著性检测[J]. 山东大学学报(工学版), 2017, 47(2): 80-85. |
[3] | 任永峰, 周静波. 基于信息弥散机制的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2015, 45(6): 1-6. |
|