山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (4): 12-19.doi: 10.6040/j.issn.1672-3961.0.2021.547
徐晓斌1(),王琪1,高彬1,孙志于2,*(),梁中军3,王尚广4
Xiaobin XU1(),Qi WANG1,Bin GAO1,Zhiyu SUN2,*(),Zhongjun LIANG3,Shangguang WANG4
摘要:
针对轨迹预测的网络资源管理方法研究中普遍存在的轨迹特征学习不充分、轨迹预测结果精度低、颗粒粗单等问题,提出双向循环神经网络的轨迹预测算法。通过深度挖掘用户的移动规律,实现对用户的移动预测。根据用户的移动预测信息设计网络资源预分配方案、移动行为划分网络资源,实现对多小区的协作式资源优化管理。仿真试验结果表明,在轨迹预测问题中,双向循环神经网络的轨迹预测算法比普通神经网络算法有更好的综合性能。在网络资源管理中,轨迹预测的网络资源管理预分配方案能够较准确地预测用户所连接的基站,使基站具有较高的资源利用率。
中图分类号:
1 |
TENG Yinglei , LIU Mengting , YU FRichard , et al. Resource allocation for ultra-dense networks: a survey, some research issues and challenges[J]. Communications Surveys and Tutorials, 2019, 21 (3): 2134- 2168.
doi: 10.1109/COMST.2018.2867268 |
2 |
ALI Nawaz , RAHIM Noora , RAHMAN Ashiqur , et al. Efficient real-time coding-assisted heterogeneous data access in vehicular networks[J]. IEEE Internet of Things Journal, 2018, 5 (5): 3499- 3512.
doi: 10.1109/JIOT.2018.2830315 |
3 |
LEE Juho , TEJEDOR Erika , RANTA-AHO Karri , et al. Spectrum for 5G: global status, challenges, and enabling technologies[J]. IEEE Communications Magazine, 2018, 56 (3): 12- 18.
doi: 10.1109/MCOM.2018.1700818 |
4 |
ZHOU Yibo , FADLULLAH Zubair , MAO Bomin , et al. A deep-learning-based radio resource assignment technique for 5G ultra dense networks[J]. IEEE Network, 2018, 32 (6): 28- 34.
doi: 10.1109/MNET.2018.1800085 |
5 | OMHENI Nouri , IMEN Bouabidi , GHARSALLAH Amina , et al. Smart mobility management in 5G heterogeneous networks[J]. Iet Networks, 2017, 7 (3): 119- 128. |
6 | ZHANG Hongtao , DAI Lingcheng . Mobility prediction: a survey on state-of-the-art schemes and future applications[J]. IEEE Access, 2018, 7, 802- 822. |
7 |
PAMUKLU Turgay , CAVDAR Cicek , ERSOY Cem . Renewable energy assisted function splitting in cloud radio access networks[J]. Mobile Networks and Applications, 2020, 25, 2012- 2023.
doi: 10.1007/s11036-020-01544-0 |
8 | JIANG Feibo , WANG Kezhi , DONG Li , et al. Deep-learning-based joint resource scheduling algorithms for hybrid MEC networks[J]. IEEE Internet of Things Journal, 2019, 7 (7): 6252- 6265. |
9 |
HOSSAIN Farhad , MAHIN Ayman , DEBNATH Topojit , et al. Recent research in cloud radio access network (C-RAN) for 5G cellular systems-a survey[J]. Journal of Network and Computer Applications, 2019, 139, 31- 48.
doi: 10.1016/j.jnca.2019.04.019 |
10 |
SABELLA Dario , VAILLANT Alessandro , KUURE Pekka , et al. Mobile-edge computing architecture: the role of MEC in the Internet of Things[J]. IEEE Consumer Electronics Magazine, 2016, 5 (4): 84- 91.
doi: 10.1109/MCE.2016.2590118 |
11 |
ZHANG Jian , WU Muqing , ZHAO Min . Joint computation offloading and resource allocation in C-RAN with MEC based on spectrum efficiency[J]. IEEE Access, 2019, 7, 79056- 79068.
doi: 10.1109/ACCESS.2019.2922702 |
12 | MIN Feng, LI Guomin, GONG Wenrong. Hetero-geneous network resource allocation optimization based on improved bat algorithm[C]// Processing of International Conference on Sensor Networks and Signal. Xi'an, China: IEEE, 2018: 55-59. |
13 |
ZHANG Hong , HUANG Chuang , ZHOU Jing , et al. QoS-aware virtualization resource management mech-anism in 5G backhaul heterogeneous networks[J]. IEEE Access, 2020, 8, 19479- 19489.
doi: 10.1109/ACCESS.2020.2967101 |
14 | HUANG Chennjung, CHEN Pochiang, GUAN Chihtai, et al. A probabilistic mobility prediction based resource management scheme for WiMAX femtocells[C]//2010 International Conference on Measuring Technology and Mechatronics Automation. Changsha, China: IEEE, 2010: 295-300. |
15 | GOMES Andre , SOUSA Bruno , PALMA David , et al. Edge caching with mobility prediction in virtualized LTE mobile networks[J]. Future Generation Computer Systems, 2017, 70 (190): 148- 162. |
16 | LI Bangxu, ZHANG Hongtao, LU Haitao. User mobility prediction based on Lagrange's interpolation in ultra-dense networks[C]//IEEE International Symposium on Personal. Valencia, Spain: IEEE, 2016: 106-115. |
17 | OZTURK Metin , GOGATE Mandar , ONIRETI Oluwakayode , et al. A novel deep learning driven low-cost mobility prediction approach for 5G cellular networks: the case of the control/data separation architecture (CDSA)[J]. Neurocomputing, 2019, 358 (17): 479- 489. |
18 | ADEGE Abebe , LIN Hsinpiao , WANG Lichun . Mobility predictions for IoT devices using gated recurrent unit network[J]. IEEE Internet of Things Journal, 2019, 7 (1): 505- 517. |
19 |
SONG Chaoming , QU Zehui , BLUMM Nicholas , et al. Limits of predictability in human mobility[J]. Science, 2010, 327 (5968): 1018- 1021.
doi: 10.1126/science.1177170 |
20 |
IRIO Luis , FURTADO Antonio , OLIVEIRA Rodolfo , et al. Interference characterization in random waypoint mobile networks[J]. IEEE Transactions on Wireless Communications, 2018, 17 (11): 7340- 7351.
doi: 10.1109/TWC.2018.2866426 |
[1] | 孟银凤,李庆方. 基于多元函数主成分表示的识别学习[J]. 山东大学学报 (工学版), 2022, 52(3): 1-8. |
[2] | 聂秀山,马玉玲,乔慧妍,郭杰,崔超然,于志云,刘兴波,尹义龙. 任务粒度视角下的学生成绩预测研究综述[J]. 山东大学学报 (工学版), 2022, 52(2): 1-14. |
[3] | 蒋桐雨,陈帆,和红杰. 基于非对称U型金字塔重建的轻量级人脸超分辨率网络[J]. 山东大学学报 (工学版), 2022, 52(1): 1-8, 18. |
[4] | 胡军,杨冬梅,刘立,钟福金. 融合节点状态信息的跨社交网络用户对齐[J]. 山东大学学报 (工学版), 2021, 51(6): 49-58. |
[5] | 梁晔,马楠,刘宏哲. 图像依赖的显著图融合方法[J]. 山东大学学报 (工学版), 2021, 51(4): 1-7. |
[6] | 宗欣露,杜佳圆. 基于多目标驱动人工蜂群算法的疏散仿真模型[J]. 山东大学学报 (工学版), 2021, 51(3): 1-6. |
[7] | 陶亮,刘宝宁,梁玮. 基于CNN-LSTM 混合模型的心律失常自动检测[J]. 山东大学学报 (工学版), 2021, 51(3): 30-36. |
[8] | 杨修远,彭韬,杨亮,林鸿飞. 基于知识蒸馏的自适应多领域情感分析[J]. 山东大学学报 (工学版), 2021, 51(3): 15-21. |
[9] | 傅桂霞,邹国锋,毛帅,潘金凤,尹丽菊. 融合Gabor特征与卷积特征的小样本行人重识别[J]. 山东大学学报 (工学版), 2021, 51(3): 22-29. |
[10] | 张俊三,程俏俏,万瑶,朱杰,张世栋. MIRGAN: 一种基于GAN的医学影像报告生成模型[J]. 山东大学学报 (工学版), 2021, 51(2): 9-18. |
[11] | 周风余,顾潘龙,万方,尹磊,贺家凯. 多运动视觉里程计的方法与技术[J]. 山东大学学报 (工学版), 2021, 51(1): 1-10. |
[12] | 王梅,薛成龙,张强. 基于秩空间差异的多核组合方法[J]. 山东大学学报 (工学版), 2021, 51(1): 108-113. |
[13] | 谢晓兰,王琦. 一种基于多目标的容器云任务调度算法[J]. 山东大学学报 (工学版), 2020, 50(4): 14-21. |
[14] | 蔡国永,贺歆灏,储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报 (工学版), 2020, 50(4): 8-13. |
[15] | 成科扬,孙爽,詹永照. 基于背景复杂度自适应距离阈值的修正SuBSENSE算法[J]. 山东大学学报 (工学版), 2020, 50(3): 38-44. |
|