山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (3): 22-29.doi: 10.6040/j.issn.1672-3961.0.2020.232
傅桂霞,邹国锋*,毛帅,潘金凤,尹丽菊
FU Guixia, ZOU Guofeng*, MAO Shuai, PAN Jinfeng, YIN Liju
摘要: 针对视频监控环境下采集的可用行人图像数量有限,以及非可靠数据标注导致监督学习算法性能下降等问题,提出一种融合Gabor特征和卷积特征的无监督小样本行人重识别方法。采用Gabor变换提取多尺度、多方向行人纹理和边缘信息,实现小样本行人图像特征级数据增强,进一步通过特征编码消除冗余信息,提升相似度比对效率。采用卷积自编码网络提取行人非线性深度卷积特征,避免监督学习算法对数据标注的依赖性。融合两种异构特征用于行人相似度比对,实现小样本下行人特征数据的拓展,同时实现行人特征判别能力增强。在Market-1501和DukeMTMC-reID数据集的试验中rank-1准确度分别达到74%和67.1%,证明所提网络架构能有效提升小样本行人重识别的性能。
中图分类号:
[1] | BEDAGKAR G A, SHAH S K. A survey of approaches and trends in person re-identification[J]. Image and Vision Computing, 2014, 32(4):270-286. |
[2] | 李幼蛟,卓力,张菁,等. 行人再识别技术综述[J]. 自动化学报, 2018, 44(9): 1554-1568. LI Y J, ZHUO L, ZHANG J, et al. A survey of person re-identification[J]. Acta Automatica Sinica, 2018, 44(9): 1554-1568. |
[3] | LV J M, CHEN W H, LI Q, et al. Unsupervised cross-dataset person re-identification by transfer learning of spatial-temporal patterns[C] //Proceeding of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 7948-7956. |
[4] | ZHONG Z, ZHENG L, ZHENG Z D, et al. CamStyle: a novel data augmentation method for person re-identi-fication[J]. IEEE Transaction on Image Processing, 2019, 28(3): 1176-1190. |
[5] | 金翠,王洪元,陈首兵. 基于随机擦除行人对齐网络的行人重识别方法[J]. 山东大学学报(工学版),2018,48(6): 67-73. JIN Cui, WANG Hongyuan, CHEN Shoubing. Person re-identification based on random erasing pedestrian alignment network method[J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 67-73. |
[6] | CHEN Y C, ZHU X T, ZHENG W S, et al. Person re-identification by camera correlation aware feature augmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(2): 392-408. |
[7] | ZHAO C R, WANG X K, MIAO D Q, et al. Maximal granularity structure and generalized multi-view discri-minant analysis for person re-identification[J]. Pattern Recognition, 2018, 79: 79-96. |
[8] | VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C] //Proceeding of the 2016 Conference on Neural Information Processing Systems. Barcelona, Spain: NIPS, 2016: 3630-3638. |
[9] | LIAO S, HU Y, ZHU X, et al. Person re-identification by local maximal occurrence representation and metric learning[C] //Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 2197-2206. |
[10] | WANG H, GONG S, XIANG T. Unsupervised learning of generative topic saliency for person re-identification[C] //Proceedings of the 2014 British Machine Vision Conference. Nottingham, UK: Springer, 2014. |
[11] | YAN C, LUO M, LIU W, et al. Robust dictionary learning with graph regularization for unsupervised person re-identification[J]. Multimedia Tools and Applications, 2018, 77(3): 3553-3577. |
[12] | DAUGMAN J. Uncertainty relation for resolution in space, spatial, frequency, and orientation optimized by two-dimensional visual cortical filters[J]. Journal of the Optical Society of America, 1985, 2(7): 1160-1169. |
[13] | RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[M]. Cambridge, Massachusetts, USA: MIT Press, 1986:533-536. |
[14] | MASCI J, MEIER U, CIRESAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction [C] //Proceedings of the 2011 International Conference on Artificial Neural Networks. Espoo, Finland: Springer, 2011: 52-59. |
[15] | ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C] //Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015:1116-1124. |
[16] | RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi camera tracking[C] //Proceedings of the 2016 European Conference on Computer Vision. Cham, Switzerland: Spr-inger, 2016: 17-35. |
[17] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
[18] | NG A. Sparse auto-encoder[R]. Stanford University, USA: CS294A Lecture Notes, 2011, 72: 1-19. |
[19] | BENGIO Y, LAMBLIM P, POPPVIVI D, et al. Greedy layer-wise training of deep networks[C] //Proceedings of the 2007 Conference on Neural Information Processing Systems. Vancouver, Canada: NIPS, 2007: 153-160. |
[20] | RADFORD A, METZ, CHINTALA S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[C] //Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico: ICLR, 2016: 1-16. |
[1] | 秦军,张远鹏,蒋亦樟,杭文龙. 多代表点自约束的模糊迁移聚类[J]. 山东大学学报 (工学版), 2019, 49(2): 107-115. |
[2] | 沈冀,马志强,李图雅,张力. 面向短文本情感分析的词扩充LDA模型[J]. 山东大学学报(工学版), 2018, 48(3): 120-126. |
[3] | 陈斌 陈松灿 潘志松 李斌. 异常检测综述[J]. 山东大学学报(工学版), 2009, 39(6): 13-23. |
|