山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (4): 20-28.doi: 10.6040/j.issn.1672-3961.0.2022.106
• • 上一篇
刘斌1,张萌2
LIU Bin1, ZHANG Meng2
摘要: 针对腿足式机器人的腿部运动模式,提出一种变刚度落地缓冲策略,对机器人躯干质心处预期的冲击进行规划,针对不同落地阶段采用不同控制方式。在缓冲阶段,通过躯干加速度规划的方式计算预期足底力,将该力映射到关节空间。在其他阶段,采用比例微分(proportional differential,PD)控制与滑模控制(sliding mode control, SMC)相结合的方式,保证运动的快速性和稳定性,并用李雅普诺夫第二法证明稳定性。试验表明,机器人质心在1.65 m处下落,该方法可使足地冲击小于1.7g。此冲击力与人上台阶的冲击力相近,说明该方法可起到良好的缓冲效果。
中图分类号:
[1] SCHUMACHER M, WOJTUSCH J, BECKERLE P, et al. An introductory review of active compliant control[J]. Robotics and Autonomous Systems, 2019, 119(1): 185-200. [2] ZHANG C, ZOU W, MA L, et al. Biologically inspired jumping robots: a comprehensive review[J]. Robotics and Autonomous Systems, 2020, 124(1): 1-19. [3] KANE T, SCHER M. A dynamical explanation of the falling cat phenomenon[J]. International Journal of Solids & Structures, 1969, 5(7): 663-670. [4] LI L, ZHAO J, XIA Y. Landing posture adjustment and buffer performance analysis of a cat robot[C] //Proceedings of the 2018 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference. Xi'an, China: IEEE, 2018: 357-363. [5] LIANG X, XU L, LU L, et al. Research on trajectory planning of a robot inspired by free-falling cat based on numerical approximation[C] //Proceedings of the 2017 IEEE International Conference on Robotics & Biomimetics. Qingdao, China: IEEE, 2017: 552-557. [6] BAURANOV A, JASENKA R. Designing airspace for urban air mobility: a review of concepts and approaches[J]. Progress in Aerospace Sciences, 2021, 125(1):1-27. [7] WANG H, WANG W, SONG Y, et al. Passive cushiony biomechanics of head protection in falling geckos[J]. Applied Bionics & Biomechanics, 2018, 2018(1): 1-7. [8] DADKHAH M, ZHAO Z, WETTELS N, et al. A self-aligning gripper using an electrostatic/gecko-like adhesive[C] //Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots & Systems. Daejeon, Korea: IEEE, 2016: 1006-1011. [9] SIDDALL R, BYRNES G, FULL R J, et al. Tails stabilize landing of gliding geckos crashing head-first into tree trunks[J]. Communications Biology, 2021, 4: 1-12. [10] FULL R. Learning from the gecko's tail[EB/OL].(2009-02-01)[2021-12-01]. https://www.ted.com/talks/robert_full_learning_from_the gecko_s_tail. [11] CHANG S, LIBBY T, BROWN M, et al. A nonlinear feedback controller for aerial self-righting by a tailed robot[C] //Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013: 32-39. [12] JUN B, KIM Y, JUNG S. Design and control of jumping mechanism for a kangaroo-inspired robot[C] //Proceedings of the 2016 IEEE International Conference on Biomedical Robotics & Biomechatronics. Singapore: IEEE, 2016: 436-440. [13] CHEN D, CHEN K, ZHANG Z, et al. Locust-inspired jumping robot with the initial jumping posture control[C] //Proceedings of the 2016 IEEE International Conference on Real-time Computing & Robotics. Angkor Wat, Cambodia: IEEE, 2016: 597-602. [14] CHEN D, ZHANG Z, CHEN K. Dynamic model and performance analysis of landing buffer for bionic locust mechanism[J]. Acta Mechanica Sinica, 2016, 32(3): 551-565. [15] ZHANG Z, CHEN D, CHEN K. Analysis and comparison of three leg models for bionic locust robot based on landing buffering performance[J]. Science China(Technological Sciences), 2016, 59(9): 1413-1427. [16] ZAITSEV V, GVIRSMAN O, HANAN U, et al. A locust-inspired miniature jumping robot[C] //Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015, 10(6): 66-72. [17] CHEN D, ZHANG Z, CHEN K. Dynamic model and performance analysis of landing buffer for bionic locust mechanism[J]. Acta Mechanica Sinica, 2016, 32(3): 551-565. [18] PI J, LIU J, ZHOU K, et, al. An octopus-inspired bionic flexible gripper for apple grasping[J]. Agriculture, 2021, 11(10): 1-16. [19] XIANG C, GIANNACCINI M, THEODORIDIS T, et al. Variable stiffness Mckibben muscles with hydraulic and pneumatic operating modes[J]. Advanced Robotics, 2016, 30(13): 889-899. [20] PRATT G, WILLIAMSON M. Series elastic actuators[C] //Proceedings of the 1995 International Conference on Intelligent Robots & Systems. Pittsburgh, USA: IEEE, 1995: 399-406. [21] IRMSCHER C, WOSCHKE E, MAY E, et al. Design, optimization and testing of a compact, inexpensive elastic element for series elastic actuators[J]. Medical Engineering & Physics, 2018, 52(1): 84-89. [22] ZHU J, SHE H, SUN W, et al. Design of compliant joints and human-robot connection in an ankle-foot exoskeleton[C] //Proceedings of the 2018 IEEE International Conference on Cyborg & Bionic Systems. Beijing, China: IEEE, 2018: 103-107. [23] HUTTER M, GEHRING C, HOEPFLINGER M, et al. Walking and running with StarlETH [C] //Proceedings of the 2013 International Symposium on Adaptive Motion of Animals and Machines. Darmstadt, Germany: AMAM, 2013: 1-5. [24] REINECKE J, DIETRICH A, SHU A, et al. A robotic torso joint with adjustable linear spring mechanism for natural dynamic motions in a differential-elastic arrangement[J]. IEEE Robotics and Automation Letters, 2022, 7(1): 9-16. [25] CATALANO M, POLLAYIL M, GRIOLI G, et al. Adaptive feet for quadrupedal walkers[J]. IEEE Transactions on Robotics, 2022, 38(1):302-316. [26] OUYANG P, YUE W, PANO V. Hybrid PD-SMC tracking control for serial robot[C] //Proceedings of the 2014 IEEE International Conference on Cyber Technology in Automation. Hong Kong, China: IEEE, 2014: 129-134. [27] ZHANG M, ZHANG Y, CHEN H, et al. Model-independent PD-SMC method with payload swing suppression for 3D overhead crane systems[J]. Mechanical Systems and Signal Processing, 2019, 129(1): 381-393. [28] LIU B, ZHANG M, LI Y. Model independent PD-SMC method for bionic eye systems[J]. Control Theory & Applications, 2018, 35(12): 1820-1825. [29] BRUNO S, OUSSAMA K. 机器人手册[M]. 北京: 机械工业出版社, 2013:108-109. |
[1] | 刘斌,宋锐,柴汇. 基于虚拟模型和加速度规划的腿部缓冲策略[J]. 山东大学学报(工学版), 2016, 46(6): 69-75. |
[2] | 隋斌,朱维申,李树忱 . 岩锚吊车梁轮压作用下的三维稳定性分析[J]. 山东大学学报(工学版), 2008, 38(1): 80-83 . |
|