您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (5): 53-62.doi: 10.6040/j.issn.1672-3961.0.2020.287

•   • 上一篇    下一篇

新能源爬坡事件综述及展望

韩学山(),王心仪,杨明*(),于一潇   

  1. 电网智能化调度与控制教育部重点实验室(山东大学), 山东 济南 250061
  • 收稿日期:2020-07-13 出版日期:2021-10-20 发布日期:2021-09-29
  • 通讯作者: 杨明 E-mail:xshan@sdu.edu.cn;myang@sdu.edu.cn
  • 作者简介:韩学山(1959—),男,辽宁大连人,教授,博士生导师,主要研究方向为电力系统运行分析与控制,优化调度等.E-mail: xshan@sdu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2018YFB0904200)

Review and prospect of renewable energy ramp events

Xueshan HAN(),Xinyi WANG,Ming YANG*(),Yixiao YU   

  1. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education (Shandong University), Jinan 250061, Shandong, China
  • Received:2020-07-13 Online:2021-10-20 Published:2021-09-29
  • Contact: Ming YANG E-mail:xshan@sdu.edu.cn;myang@sdu.edu.cn

摘要:

从爬坡的定义方式、预测方法、控制策略三个层面出发, 对以风电、光伏为代表的新能源爬坡事件进行概述。列举爬坡事件常用的定义并分析其优劣性; 总结爬坡事件目前主流的预测方法,根据是否利用功率预测结果分为直接法和间接法, 并对常用的评价指标进行介绍; 阐述目前爬坡控制策略常用的方法, 按照有无储能参与分为无储能参与的有限度控制策略和有储能参与的联合控制; 对目前研究仍存在的问题和未来重点研究方向进行总结。

关键词: 风电爬坡事件, 光伏爬坡事件, 爬坡预测, 有限度控制, 储能控制

Abstract:

This article elaborated the wind and solar power ramp events from the three levels: the definition, prediction method and control strategy. The common definitions of wind and solar ramp were listed, and their advantages and disadvantages were analyzed in turn. It summarized the current mainstream prediction methods of ramp events, which were divided into direct method and indirect method according to whether the power prediction results were used, and the commonly used evaluation indicators were evaluated. It elaborated the current commonly used methods of control strategy, taking energy storage participation as a division, it was divided into finite control strategy without energy storage participation and infinite control strategy with energy storage participation. The current research problems and key research directions in the future were summarized and prospected.

Key words: wind power ramp event, solar power ramp event, ramp forecasting, finite control strategy, energy storage control

中图分类号: 

  • TM71

图1

爬坡事件"

图2

爬坡事件预测方法"

图3

爬坡事件直接预测法"

图4

爬坡事件间接预测法"

表1

爬坡事件预测结果的判定"

类型 事件观测真 事件观测假 总计
事件预测真 TP FP 预测真
事件预测假 FN TN 预测假
总计 观测真 观测假

图5

爬坡控制分阶段控制"

图6

基于博弈的协调控制流程框图"

图7

预测-在线优化-反馈的控制模型"

图8

风/光储联合控制策略"

1 张东英, 代悦, 张旭, 等. 风电爬坡事件研究综述及展望[J]. 电网技术, 2018, 42 (6): 1783- 1792.
ZHANG Dongying , DAI Yue , ZHANG Xu , et al. Review and prospect of research on wind power ramp events[J]. Power System Technology, 2018, 42 (6): 1783- 1792.
2 TRUEWIND A. AWS Truewind's final report for the Alberta forecasting pilot project[R]. New York: Wind Power Forecasting PILOT Project, 2008.
3 KUSIAK A , ZHENG H , SONG Z . Wind farm power Prediction: A data-mining approach[J]. Wind Energy, 2009, 12 (3): 275- 293.
doi: 10.1002/we.295
4 KAMATH C. Understanding wind ramp events through analysis of historical data[C]//Proceedings of the IEEE PES Transmission and Distribution Conference and Exposition. New Orleans, USA: IEEE, 2010.
5 BOSSAVY A, GIRARD R, KARINIOTAKIS G. Forecasting uncertainty related to ramps of wind power production[C]//Proceedings of the European Wind Energy Conference & Exhibition. Warsaw, Poland: EWEC, 2010.
6 KAMATH C . Using simple statistical analysis of historical data to understand wind ramp events[M]. Livermore, USA: Lawrence Livermore National Security, 2010.
7 李芬, 李春阳, 闫全全, 等. 多时间尺度下光伏出力爬坡事件概率建模与评估研究[J]. 太阳能学报, 2019, 40 (11): 3289- 3298.
LI Fen , LI Chunyang , YAN Quanquan , et al. PV power ramp events probability modeling and assessment in multiple time scales[J]. Acta Energiae Solaris Sinica, 2019, 40 (11): 3289- 3298.
8 ZHENG Haiyang , KUSIAK A . Prediction of wind farm power ramp rates: a data-mining approach[J]. Journal of Solar Energy Engineering, 2009, 131 (3): 31011.
doi: 10.1115/1.3142727
9 KAMATH C. Associating weather conditions with ramp events in wind power generation[C]//2011 IEEE/PES Power Systems Conference and Exposition. Phoenix, USA: IEEE, 2011.
10 朱文立, 张利, 杨明, 等. 考虑日周期性影响的光伏功率爬坡事件非精确概率预测[J]. 电力系统自动化, 2019, 43 (20): 31- 40.
doi: 10.7500/AEPS20190131003
ZHU Wenli , ZHANG Li , YANG Ming , et al. Imprecise probabilistic prediction of photovoltaic power ramp event considering daily periodic effect[J]. Automation of Electric Power System, 2019, 43 (20): 31- 40.
doi: 10.7500/AEPS20190131003
11 SOTO W D , KLEIN S A , BECKMAN W A . Improvement and validation of a model for photovoltaic array performance[J]. Solar Energy, 2006, 80 (1): 78- 88.
doi: 10.1016/j.solener.2005.06.010
12 匡洪海, 王建辉, 张瀚超, 等. 一种新型的风电功率爬坡段识别方法[J]. 电网技术, 2019, 43 (5): 1752- 1759.
KUANG Honghai , WANG Jianhui , ZHANG Hanchao , et al. A novel wind power climbing section identification method[J]. Power System Technology, 2019, 43 (5): 1752- 1759.
13 甘迪, 柯德平, 孙元章, 等. 基于突变理论的风电爬坡多步预测[J]. 现代电力, 2016, 33 (3): 14- 21.
doi: 10.3969/j.issn.1007-2322.2016.03.003
GAN Di , KE Deping , SUN Yuanzhang , et al. Multi-step wind power ramp forecasting based on catastrophe theory[J]. Power System Technology, 2016, 33 (3): 14- 21.
doi: 10.3969/j.issn.1007-2322.2016.03.003
14 唐振浩, 孟庆煜, 曹生现, 等. 基于小波深度置信网络的风电爬坡预测方法[J]. 太阳能学报, 2019, 40 (11): 3213- 3220.
TANG Zhenhao , MENG Qingyu , CAO Shengxian , et al. Wind power ramp prediction algorithm based on wavelet deep belief network[J]. Acta Energiae Solaris Sinica, 2019, 40 (11): 3213- 3220.
15 ARIAS-CASTRO E , KLEISSAL J , LAVE M . A Poisson model for anisotropic solar ramp rate correlations[J]. Solar Energy, 2014, 101, 192- 202.
doi: 10.1016/j.solener.2013.12.028
16 刁浩然, 杨明, 韩学山, 等. 电力设备停运概率的非精确条件估计[J]. 中国电机工程学报, 2016, (19): 5134- 5144.
DIAO Haoran , YANG Ming , HAN Xueshan , et al. Imprecise estimation for conditional outage probabilities of power components[J]. Proceedings of the CSEE, 2016, (19): 5134- 5144.
17 GAN Di , KE Deping . Wind power ramp forecasting based on least-square support vector machine[J]. Applied Mechanics and Materials, 2014, 3044, 162- 166.
18 吴振威, 蒋小平, 马会萌, 等. 多时间尺度的光伏出力波动特性研究[J]. 现代电力, 2014, 31 (1): 58- 61.
doi: 10.3969/j.issn.1007-2322.2014.01.011
WU Zhenwei , JIANG Xiaoping , MA Huimeng , et al. Study on fluctuations characteristics of photovoltaic power output in different time scales[J]. Modern Electric Power, 2014, 31 (1): 58- 61.
doi: 10.3969/j.issn.1007-2322.2014.01.011
19 JIANG Quanyuan , WANG Haijiao . Two-time-scale coordination control for a battery energy storage system to mitigate wind power fluctuations[J]. IEEE Transactions on Energy Conversion, 2013, 28 (1): 52- 61.
doi: 10.1109/TEC.2012.2226463
20 叶林, 路朋, 滕景竹, 等. 考虑风电功率爬坡的功率预测-校正模型[J]. 电力系统自动化, 2019, 43 (6): 49- 56.
YE Lin , LU Peng , TENG Jingzhu , et al. Power prediction-correction model considering wind power ramp[J]. Automation of Electric Power Systems, 2019, 43 (6): 49- 56.
21 CUTLER N , KAY M , JACKA K , et al. Detecting, categorizing and forecasting large ramps in wind farm power output using meteorological observations and WPPT[J]. Wind Energy, 2007, 10 (5): 453- 470.
doi: 10.1002/we.235
22 崔明建, 孙元章, 柯德平. 基于原子稀疏分解和BP神经网络的风电功率爬坡事件预测[J]. 电力系统自动化, 2014, 38 (12): 6- 11.
doi: 10.7500/AEPS20130418003
CUI Mingjian , SUN Yuanzhang , KE Deping . Wind power ramp events forecasting based on atomic sparse decomposition and BP neural networks[J]. Automation of Electric Power Systems, 2014, 38 (12): 6- 11.
doi: 10.7500/AEPS20130418003
23 黄麒元, 王致杰, 杜彬, 等. 基于前置分解组合预测方法的风电功率爬坡预测研究[J]. 可再生能源, 2016, 34 (12): 1847- 1852.
HUANG Qiyuan , WANG Zhijie , DU Bin , et al. Wind power ramp forecasting based on the front decomposition combination forecast method[J]. Renewable Energy Resources, 2016, 34 (12): 1847- 1852.
24 欧阳庭辉, 查晓明, 秦亮, 等. 基于相似性修正的风电功率爬坡事件预测方法[J]. 中国电机工程学报, 2017, 37 (2): 572- 580.
OUYANG Tinghui , ZHA Xiaoming , QIN Liang , et al. Wind power ramp events forecast method based on similarity correction[J]. Proceedings of the CSEE, 2017, 37 (2): 572- 580.
25 王建辉. 风电场短期功率预测及爬坡识别方法研究[D]. 株洲: 湖南工业大学, 2019.
WANG Jianhi. Research on short-term power forecasting and slope climbing recognition method of wind farm[D]. Zhuzhou: Hunan University of Technology, 2019.
26 崔明建, 孙元章, 柯德平. 考虑电网侧频率偏差的风电功率爬坡事件预测研究[J]. 电力系统自动化, 2014, 38 (5): 8- 13.
CUI Mingjian , SUN Yuanzhang , KE Deping . Prediction method for wind power ramp events considering frequency deviation of power grid side[J]. Automation of Electric Power Systems, 2014, 38 (5): 8- 13.
27 李春, 卫志农, 孙国强, 等. 基于DFIG频率模型的风电功率爬坡事件预测方法[J]. 电网技术, 2016, 40 (3): 840- 846.
LI Chun , WEI Zhinong , SUN Guoqiang , et al. Wind power ramp prediction based on DFIG frequency model[J]. Power System Technology, 2016, 40 (3): 840- 846.
28 王勃, 汪步惟, 杨明, 等. 风电爬坡事件的非精确条件概率预测[J]. 山东大学学报(工学版), 2020, 50 (1): 82- 94.
WANG Bo , WANG Buwei , YANG Ming , et al. Imprecise conditional probability prediction of wind power ramp events[J]. Journal of Shandong University(Engineering Science), 2020, 50 (1): 82- 94.
29 郝正航, 余贻鑫, 曾沅. 改善电力系统阻尼特性的双馈风电机组控制策略[J]. 电力系统自动化, 2011, 35 (15): 25- 29.
HAO Zhenghang , YU Yixin , ZENG Yuan . A control strategy for increasing power system damping with wind turbine-driven doubly-fed induction generator[J]. Automation of Electric Power Systems, 2011, 35 (15): 25- 29.
30 廖勇, 何金波, 姚骏, 等. 基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J]. 中国电机工程学报, 2009, 29 (18): 71- 77.
doi: 10.3321/j.issn:0258-8013.2009.18.012
LIAO Yong , HE Jinbo , YAO Jun , et al. Power smoothing control strategy of direct-driven permanent magnet synchronous generator for wind turbine with pitch angle control and torque dynamic control[J]. Proceedings of the CSEE, 2009, 29 (18): 71- 77.
doi: 10.3321/j.issn:0258-8013.2009.18.012
31 乔颖, 鲁宗相. 考虑电网约束的风电场自动有功控制[J]. 电力系统自动化, 2009, 33 (22): 88- 93.
QIAO Ying , LU Zongxiang . Wind farms active power control considering constraints of power grids[J]. Automation of Electric Power Systems, 2009, 33 (22): 88- 93.
32 张昭遂, 孙元章, 李国杰, 等. 超速与变桨协调的双馈风电机组频率控制[J]. 电力系统自动化, 2011, 35 (17): 20- 25.
ZHANG Zhaosui , SUN Yuanzhang , LI Guojie , et al. Frequency regulation by doubly fed induction generator wind turbines based on coordinated over speed control and pitch control[J]. Automation of Electric Power Systems, 2011, 35 (17): 20- 25.
33 戚永志, 刘玉田. 风电高风险爬坡有限度控制[J]. 中国电机工程学报, 2013, 33 (13): 69- 75.
QI Yongzhi , LIU Yutian . Wind power high risk ramp limited control[J]. Proceedings of the CSEE, 2013, 33 (13): 69- 75.
34 KHODAYAR ME , SHAHIDEHPOUR M . Stochastic price-based coordination of intrahour wind energy and storage in a generation company[J]. IEEE Transactions on Sustainable Energy, 2013, 4 (3): 554- 562.
doi: 10.1109/TSTE.2012.2228284
35 梅生伟, 郭文涛, 王莹莹, 等. 一类电力系统鲁棒优化问题的博弈模型及应用实例[J]. 中国电机工程学报, 2013, 33 (19): 47- 56.
MEI Shengwei , GUO Wentao , WANG Yingying , et al. A game model for robust optimization of power systems and its application[J]. Proceedings of the CSEE, 2013, 33 (19): 47- 56.
36 戚永志, 刘玉田. 基于竞争博弈的风电爬坡协同控制策略[J]. 中国电机工程学报, 2014, 34 (25): 4341- 4349.
QI Yongzhi , LIU Yutian . Wind power ramping cooperative control strategy based on competitive games[J]. Proceedings of the CSEE, 2014, 34 (25): 4341- 4349.
37 夏雪, 戚永志, 刘玉田. 风机爬坡功率的有限度控制策略[J]. 电力系统自动化, 2014, 38 (20): 26- 32.
doi: 10.7500/AEPS20130608010
XIA Xue , QI Yongzhi , LIU Yutian . Limited control strategy of wind power ramp events[J]. Automation of Electric Power Systems, 2014, 38 (20): 26- 32.
doi: 10.7500/AEPS20130608010
38 崔阳. 计及载荷优化的风机爬坡控制研究[D]. 济南: 山东大学, 2015.
CUI Yang. Wind turbinr ramping control considering load optimization[D]. Jinan: Shandong University, 2015.
39 YOSHIMOTO K, NANAHARA T, KOSHIMIZU G. New control method for regulating state-of-charge of a battery in hybrid wind power/battery energy storage system[C]//Proceedings of IEEE Power Systems Conference & Exposition. Atlanta, USA: IEEE, 2006.
40 王伟, 薛金花, 叶季蕾, 等. 基于SOC调控的用于抑制光伏波动的电池储能优化控制方法[J]. 电力系统保护与控制, 2014, 42 (2): 75- 80.
WANG Wei , XUE Jinhua , YE Jilei , et al. An optimization control design of battery energy storage based on SOC for leveling off the PV power fluctuation[J]. Power System Protection and Control, 2014, 42 (2): 75- 80.
41 鲍雪娜, 张建成, 徐明, 等. 基于混合储能的并网光伏电站有功分级控制策略[J]. 电力系统自动化, 2013, 37 (1): 115- 121.
BAO Xuena , ZHANG Jiancheng , XU Ming , et al. Active power hierarchical control strategy of interconnected photovoltaic station based on hybrid energy storage[J]. Automation of Electric Power Systems, 2013, 37 (1): 115- 121.
42 JIANG Quanyuan , HONG Haisheng . Wavelet-based capacity configuration and coordinated control of hybrid energy storage system for smoothing out wind power fluctuations[J]. IEEE Transactions on Power Systems, 2013, 28 (2): 1363- 1372.
doi: 10.1109/TPWRS.2012.2212252
43 吴振威, 蒋小平, 马会萌, 等. 用于混合储能平抑光伏波动的小波包-模糊控制[J]. 中国电机工程学报, 2014, 34 (3): 317- 324.
WU Zhenwei , JIANG Xiaoping , MA Huimeng , et al. Wavelet packet-fuzzy control of hybrid energy storage systems for PV power smoothing[J]. Proceedings of the CSEE, 2014, 34 (3): 317- 324.
44 田立亭, 李建林, 程林. 基于概率预测的储能系统辅助风电场爬坡率控制[J]. 高电压技术, 2015, 41 (10): 3233- 3239.
TIAN Liting , LI Jianlin , CHENG Lin . Wind farm ramp rate control using energy storage based on probability prediction[J]. High Voltage Engineering, 2015, 41 (10): 3233- 3239.
45 付爱慧. 高渗透率光伏电网储能容量规划与优化控制研究[D]. 济南: 山东大学, 2018.
FU Aihui. Research on capacity planning and optimal control of BESS in a high photovoltaic penetration power grid[D]. Jinan: Shandong University, 2018.
46 ALAM M J E , MUTTAQI K M , SUTANTO D . A novel approach for ramp-rate control of solar PV using energy storage to mitigate output fluctuations caused by cloud passing[J]. IEEE Transactions on Energy Conversion, 2014, 29 (2): 507- 518.
doi: 10.1109/TEC.2014.2304951
47 黄麒元, 王致杰, 杜彬, 等. 基于前置分解组合预测方法的风电功率爬坡预测研究[J]. 可再生能源, 2016, 34 (12): 1847- 1852.
HUANG Qiyuan , WANG Zhijie , DU Bin , et al. Research on wind power grade ability prediction based on pre-decomposition combined forecasting[J]. Renewable Energy, 2016, 34 (12): 1847- 1852.
[1] 亓晓燕,刘恒杰,侯秋华,刘啸宇,谭延超,王连成. 融合LSTM和SVM的钢铁企业电力负荷短期预测[J]. 山东大学学报 (工学版), 2021, 51(4): 91-98.
[2] 刘晓明,丛旖旎,李文博,刘玉田. 大规模光伏接入受端电网方案综合决策[J]. 山东大学学报 (工学版), 2019, 49(4): 115-122.
[3] 刘萌,徐陶阳,李常刚,吴越,王智,史方芳,苏建军,张国辉,李宽. 基于粒子群算法的受端电网紧急切负荷优化[J]. 山东大学学报 (工学版), 2019, 49(1): 120-128.
[4] 丛旖旎,曹增功,牟宏,王春义,刘玉田. 百万千瓦级滩涂光伏电站接入电网分析[J]. 山东大学学报(工学版), 2017, 47(6): 77-82.
[5] 李笋,王超,张桂林,徐志根,程涛,王义元,王瑞琪. 基于支持向量回归的短期负荷预测[J]. 山东大学学报(工学版), 2017, 47(6): 52-56.
[6] 吉兴全,韩国正,李可军,傅荣荣,朱仰贺. 基于密度的改进K均值聚类算法在配网区块划分中的应用[J]. 山东大学学报(工学版), 2016, 46(4): 41-46.
[7] 赵康,王春义,杨冬,刘玉田. 考虑单相短路电流控制的特高压受端电网限流优化[J]. 山东大学学报(工学版), 2016, 46(4): 117-124.
[8] 于松青, 侯承昊, 孙英涛. 基于系统动力学的山东省电力需求预测[J]. 山东大学学报(工学版), 2015, 45(6): 91-98.
[9] 王铭. 基于主导频带相对瞬时变化率的配网故障选线方法[J]. 山东大学学报(工学版), 2015, 45(4): 25-30.
[10] 高洪霞,徐明铭,李可军,谭震宇. 配电系统电压跌落源定位新方法[J]. 山东大学学报(工学版), 2009, 39(5): 115-119.
[11] 李莉,刘玉田 . 基于同调分群和自适应判据的失步解列策略[J]. 山东大学学报(工学版), 2007, 37(6): 49-53 .
[12] 牛新生,叶华,王亮 . SVC对山东电网的影响与配置地点选择[J]. 山东大学学报(工学版), 2007, 37(4): 68-72 .
[13] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111-116 .
[14] 孙东磊,赵龙,秦敬涛,韩学山,杨明,王明强. 基于学习理论的含光储联合系统的输电网双层规划[J]. 山东大学学报 (工学版), 2020, 50(4): 90-97.
[15] 葛维春,李昭,赵东,李振宇,叶青,傅予,于娜. 含电极式电锅炉的地区电网电源侧综合效益分析[J]. 山东大学学报 (工学版), 2020, 50(5): 90-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[8] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[9] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[10] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .