您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (5): 63-75.doi: 10.6040/j.issn.1672-3961.0.2021.234

•   • 上一篇    下一篇

海洋波浪能发电装置研究进展

刘延俊1,2,3,武爽2,3,王登帅2,3,王若宏2,3   

  1. 1. 山东大学机械工程学院, 山东 济南 250061
    2. 山东大学海洋研究院, 山东 青岛 266237
    3. 山东大学机械工程学院高效洁净机械制造教育部重点实验室, 山东 济南 250061
  • 收稿日期:2021-05-11 出版日期:2021-10-20 发布日期:2021-09-29
  • 作者简介:刘延俊(1965—),男,山东济南人,教授,博士生导师,主要研究方向为流体动力控制,波浪能发电技术,深海探测技术与装备
  • 基金资助:
    山东省重大科技创新工程资助项目(2018CXGC0104);国家自然科学基金资助项目(U1706230);国家重点研发计划资助项目(2016YFE0205700)

Research progress of ocean wave energy converters

Yanjun LIU1,2,3,Shuang WU2,3,Dengshuai WANG2,3,Ruohong WANG2,3   

  1. 1. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, Shandong, China
    3. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, Shandong University, Jinan 250061, Shandong, China
  • Received:2021-05-11 Online:2021-10-20 Published:2021-09-29

摘要:

为准确把握海洋波浪能利用技术的发展情况, 以海洋波浪能发电装置为出发点, 综述当前的重要研究进展。波浪能装置形式尚未收敛, 以不同的能量捕获方式为分类原则, 介绍振荡水柱式、越浪式和振荡体式3类主流装置的工作原理及其能量转换系统。分析每类装置的优缺点,选取典型工程装置展开详细的介绍。对我国已经完成海试的工程装置情况进行整理, 发现振荡体式是我国当前最主流的装置形式。总结波浪能发电装置性能评价的研究进展, 目前尚未形成统一的评价标准。分别从高效性与稳定性、可靠性与成本和多元化综合平台建设3个方面探讨波浪能发电装置发展所面临的困难及主要的突破方向。

关键词: 波浪能转换, 装置类型, 工作原理, 性能分析, 发展趋势

Abstract:

In order to accurately keeping the developments of ocean wave energy utilization technology, the important research progress of wave energy converters was reviewed. The forms of wave energy converters had not yet converged. According to the classification principle of different energy capture methods, the working principle and the energy conversion system of three main types of devices, namely, oscillating water column, overtopping and oscillating bodies were introduced. The advantages and disadvantages of each type of converter were analyzed. Typical engineering devices were selected for detailed introduction. The engineering devices which had been completed sea trial in China were summarized. It has been found that the oscillation type was the most popular type of converter in China. The research progress related to the performance evaluation of wave energy converters were summarized, but there was no unified evaluation standard yet. The difficulties and the main breakthrough directions of the developments of wave energy converters were discussed from three aspects of high efficiency and stability, reliability and cost, and the construction of diversified integrated platforms.

Key words: wave energy conversion, device type, working principle, performance analysis, development tendency

中图分类号: 

  • P74

图1

波浪能发电装置原理示意图"

图2

自整流空气透平示意图"

图3

越浪式装置水轮机示意图"

图4

直驱式和液压式传动示意图"

表1

波浪能转换器分类及代表性装置"

波浪能捕获方式 固定方式 装置名称
振荡水柱式 漂浮式 Mighty Whale, Sperboy, SparBuoy, Oceanlinx, YetiCluster, Kaimei, LeanCon
固定式 Pico, LIMPET, Sakata, REWEC3, 航标式微型OWC, Mutriku
振荡体式 漂浮式 AquaBuoy, IPS Buoy, FO3, Wavebob, PowerBuoy, WETEnGen, WETNZ, 山大I号, 鹰式I号, Pelamis, PSFrog, SEAREV, Waveberg, WaveRider, 集大I号
固定式 AWS, CETO, WaveRoller, Oyster, The Mace
越浪式 漂浮式 Wave Dragon
固定式 TAPCHAN, SSG

图5

Pico波浪能发电装置"

图6

LIMPET波浪能发电装置"

图7

Mutriku波浪能发电装置"

图8

Kaimei波浪能发电装置"

图9

LeanCon波浪能发电装置"

图10

TAPCHAN波浪能发电装置"

图11

SSG波浪能发电装置"

图12

Wave Dragon波浪能发电装置"

图13

PowerBuoy波浪能发电装置"

图14

Wavestar波浪能发电装置"

图15

Oyster波浪能发电装置"

图16

BioWAVE波浪能发电装置"

图17

广州能源所系列装置"

图18

国家海洋技术中心摆式波浪能发电装置"

图19

“山大Ⅰ号”波浪能发电装置"

图20

中船重工710所海龙装置"

图21

中国海洋大学海灵号波能发电装置"

图22

集大Ⅰ号波浪能发电装置"

1 COLTON W. The outlook for energy: a view to 2040[R]. Riyadh, Kingdom of Saudi Arabia: Exxonmo-bil, 2013.
2 MWASILU F , JUNG J . Potential for power generation from ocean wave renewable energy source: a comprehensive review on state-of-the-art technology and future prospects[J]. IET Renewable Power Generation, 2019, 13 (3): 363- 375.
doi: 10.1049/iet-rpg.2018.5456
3 ZHANG Yongxing , ZHAO Yongjie , SUN Wei , et al. Ocean wave energy converters: technical principle, device realization, and performance evaluation[J]. Renewable and Sustainable Energy Reviews, 2021, 141, 1- 20.
4 WU S , LIU Y , QIN J . Experimental analyses of two-body wave energy converters with hydraulic power take-off damping in regular and irregular waves[J]. IET Renewable Power Generation, 2021, 20, 1- 11.
5 LIU Yijin , LI Ye , HE Fenglan , et al. Comparison study of tidal stream and wave energy technology development between China and some Western countries[J]. Renewable and Sustainable Energy Reviews, 2017, 76 (17): 701- 716.
6 EMRE O , ISMAIL H . Control, power and electrical components in wave energy conversion systems: a review of the technologies[J]. Renewable and Sustainable Energy Reviews, 2017, 67 (17): 106- 115.
7 RUSU L , ONEA F . The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power[J]. Renewable and Sustainable Energy Reviews, 2017, 75 (17): 1348- 1362.
8 ADERINTO T , LI H . Ocean wave energy converters: status and challenges[J]. Energies, 2018, 11 (5): 1250- 1275.
doi: 10.3390/en11051250
9 FALCO A F D . Wave energy utilization: a review of the technologies[J]. Renewable and Sustainable Energy Reviews, 2010, 14 (3): 899- 918.
doi: 10.1016/j.rser.2009.11.003
10 MELO A B, BHUYAN G. 2008 annual report on ocean energy systems[R]. Sicilia, Italy: IEA-OES, 2009.
11 EVALUATION Report. Marine energy challenge, oscillating water column wave energy converter[R]. Oak Ridge, USA: Department of Energy, 2005.
12 CLEMENT A , MCCULLEN P , FALCAO A , et al. Wave energy in Europe: current status and perspectives[J]. Renewable and Sustainable Energy Reviews, 2002, 6 (5): 405- 431.
doi: 10.1016/S1364-0321(02)00009-6
13 MUHAMMAND A M , OMAR Y , AHMED Y M , et al. Wave energy device and breakwater integration: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 77, 43- 58.
doi: 10.1016/j.rser.2017.03.110
14 TAKAO M , SETOGUCHI T . Air turbines for wave energy conversion[J]. Energy Conversion Management, 2012, 47, 1- 10.
15 O′SULLIVAN D, MOLLAGHAN D, BLAVETTE A, et al. Dynamic characteristics of wave and tidal energy converters & a recommended structure for development of a generic model for grid connection[R]. Dublin, Ireland: IEA-OES, 2010.
16 FINNIGAN T, AULD D. Model testing of a variable-pitch aerodynamic turbine[C]//Proceedings of 13th International Offshore and Polar Engineering Conference. Hawaii, USA: (s. n. ), 2003: 357-360.
17 CURRAN R, DENNISS T, BOAKE C. Multidisci-plinary design for performance: ocean wave energy conversion [C]//Proceedings of 10th International Offshore and Polar Engineering Conference. Seattle, USA: (s. n. ) 2000: 434-441.
18 HONG Y , WATERS R , BOSTROM C , et al. Review on electrical control strategies for wave energy converting systems[J]. Renewable and Sustainable Energy Reviews, 2014, 29 (5): 329- 342.
19 KHALIGH A , ONAR O C . Energy harvesting: solar, wind, and ocean energy conversion systems[M]. Florida, USA: CRC Press, 2010: 1- 5.
20 FALCAO A , HENRIQUES J . Oscillating-water-column wave energy converters and air turbines: a review[J]. Renewable Energy, 2016, 85 (16): 1391- 1424.
21 MAWOOA D, LATCHOOMUN L, KAULLY R G, et al. An overview of wave energy technologies in the Mauritian context[C]//5th International Symposium on Environment Friendly Energies and Applications. Rome, Italy: IEEE Press, 2018: 1-6.
22 VICINANZA D , MARGHERITINI L , KOFOED J P , et al. The SSG wave energy converter: performance, status and recent developments[J]. Energies, 2012, 5 (2): 193- 226.
doi: 10.3390/en5020193
23 刘延俊, 贺彤彤. 波浪能利用发展历史与关键技术[J]. 海洋技术学报, 2017, 36 (4): 76- 81.
LIU Yanjun , HE Tongtong . Wave energy utilization: history of development and key technologies[J]. Journal of Ocean Technology, 2017, 36 (4): 76- 81.
24 张伟. 液压波浪能发电装置稳定性及控制策略研究[D]. 济南: 山东大学, 2018.
ZHANG Wei. Study on stability and control strategy of hydraulic wave power generation device[D]. Jinan: Shandong University, 2018.
25 QIU Shouqiang , LIU Kun , WANG Dongjiao , et al. A comprehensive review of ocean wave energy research and development in China[J]. Renewable and Sustainable Energy Reviews, 2019, 113 (19): 1- 19.
26 FAIZ J , NEMATSABERI A . Linear electrical generator topologies for direct-drive marine wave energy conversion-an overview[J]. IET Renewable Power Generation, 2017, 11 (9): 1163- 1176.
doi: 10.1049/iet-rpg.2016.0726
27 ALBERT A , BERSELLI G , BRUZZONE L , et al. Mechanical design and simulation of an onshore four-bar wave energy converter[J]. Renewable Energy, 2017, 114 (17): 766- 774.
28 OSAWA H, MIYAZAKI T. Wave-PV hybrid generation system carried in the offshore floating type wave power device "Mighty Whale" [C]//MTS/IEEE Techno-Ocean′04 Conference. Kobe, Japan: IEEE Press, 2004: 1860-1866.
29 OSAWA H, WASHIO Y, OGATA T, et al. The offshore floating type wave power device "Mighty Whale" open sea tests: performance of the prototype[C]//12th International Offshore and Polar Engineering Conference. Kyushu, Japan: ISOPE, 2002: 595-600.
30 SPENCER S M, THOM P R. Wave-energy buoy: 12/192723[P]. 2010-08-31.
31 BRADLEY C, VENEZIA W. Spar buoy platform for water wave, turbulence and underwater electric field sensors[C]//IEEE/OES 10th Current, Waves and Turbulence Measurements. Monterey, USA: IEEE Press, 2010: 190-197.
32 HINE R G, HINE D L, RIZZI J D. Wave power: US7371136 B2[P]. 2011-10-25.
33 OLCOPL T D. Oceanlinx technical facts sheet [EB/OL]. (2015-03-15)[2020-12-20]. http://www.ocean-linx.com/images/reports/andlinks/oceanlinx_technical_facts_sheet_v3_eng.pdf.
34 PAGE J. Wave energy converters: US20110057448[P]. 2011-03-10.
35 FODOREAN D, SZABO L, MIRAOUI A. Generator solutions for stand alone pico-electric power plants[C]//IEEE International Electric Machines and Drives Conference. Miami, USA: IEMDC Press, 2009: 434-438.
36 POP E, LEBA M, BARBU C T, et al. Modeling, simulation and control of pico-hydropower plant[C]//4th WSEAS/IASME International Conference on Dynamical Systems and Control. Corfu, Greece: ICDSC Press, 2008: 103-108.
37 ALCOM R G, BEATTIE W C. Power quality assess-ment from a wave-power station[C]//16th International Conference and Exhibition on Electricity Distribution. Amsterdam, Netherlands: ICEED Press, 2001: 238-241.
38 HEATH T, WHITTAKER T J T, BOAKE C B. The design, construction and operation of the LIMPET wave energy converter[C]// The 4th European Wave Energy Conference. Islay, Scotland: IEEE Press, 2000: 49-55.
39 WHITTAKER T J T , BEATTIE W , FOLLEY M , et al. The LIMPET wave power project-the first years of operation[J]. Renewable Energy, 2003, 1 (1): 1- 8.
40 SUZUKI M, ARAKAWA C, TAKAHASHI S. Performance of wave power generating system installed in break water at Sakataport in Japan[C]//14th International Offshore and Polar Engineering Conference (2004). Toulon, France: ISOPE Press, 2004: 202-209.
41 顾煜炯, 谢典, 耿直. 波浪能发电技术研究进展[J]. 电网与清洁能源, 2016, 32 (5): 83- 87.
doi: 10.3969/j.issn.1674-3814.2016.05.015
GU Yujiong , XIE Dian , GENG Zhi . Progress of research on wave energy generation technology[J]. Advances of Power System and Hydroelectric Engineering, 2016, 32 (5): 83- 87.
doi: 10.3969/j.issn.1674-3814.2016.05.015
42 ENCISO Y T, ORTUBIA I, AGUILETA L I L, et al. Mutriku wave power plant: from the thinking out to the reality[C]//8th European Wave and Tidal Energy Conference Proceedings. Uppsala, Sweden: EWTEC Press, 2009: 319-329.
43 HOLZMAN D C . Blue power: turning tides into electricity[J]. Environmental Health Perspective, 2007, 115 (12): 590- 593.
44 DUNNETT D , WALLACE J S . Electricity generation from wave power in Canada[J]. Renewable Energy, 2009, 34 (1): 179- 195.
doi: 10.1016/j.renene.2008.04.034
45 WEINSTEIN A, FREDRIKSON G, PARKS M J, et al. AquaBuOY-the offshore wave energy converter num-erical modeling and optimization[C]//MTS/IEEE Techno-Ocean′04 Conference. Kobe, Japan: IEEE Press, 2004: 1854-1859.
46 PAYNE G S, TAYLOR J R M, PARKIN P, et al. Numerical modelling of the sloped IPS buoy wave energy converter[C]//The Sixteenth International Offshore and Polar Engineering Conference. San Francisco, USA: IOPEC Press, 2006: 396-402.
47 GOMES R P F , HENRIQUES J C , GATO L M C , et al. IPS 2-body wave energy converter: acceleration tube optimization[J]. International Journal of Offshore Polar, 2010, 20 (4): 247- 255.
48 FALCAO A F O , CANDIDO J J , JUSTINO P A P , et al. Hydrodynamics of the IPS buoy wave energy converter including the effect of non-uniform acceleration tube cross section[J]. Renewable Energy, 2012, 41 (1): 105- 114.
49 GARNAUD X , MEI C C . Comparison of wave power extraction by a compact array of small buoys and by a large buoy[J]. IET Renewable Power Generation, 2010, 4 (6): 519- 530.
doi: 10.1049/iet-rpg.2009.0166
50 KNIGHT H . Offshore device is hydropower′s next wave[J]. Engineer, 2003, 292 (7628): 1- 9.
51 WBCOP A. WaveBob [EB/OL]. (2003-01-18)[2020-12-21]. www.wavebob.com/key-features.
52 WOOD J . Racing the waves[J]. Power Engineering, 2004, 18 (3): 24- 26.
doi: 10.1049/pe:20040304
53 KIME P . Harnessing wave energy: navy program in Hawaii to see fully functional[J]. Power This Year Sea Power, 2010, 53 (3): 28- 39.
54 COPPER M R. Marine Renewables[EB/OL]. (2015-05-25) [2020-12-21]. www. sea-technology. com.
55 游亚戈, 李伟, 刘伟民, 等. 海洋能发电技术的发展现状与前景[J]. 电力系统自动化, 2010, 34 (14): 1- 12.
YOU Yage , LI Wei , LIU Weimin . Development status and perspective of marine energy conversion systems[J]. Automation of Electric Power Systems, 2010, 34 (14): 1- 12.
56 DALTON G J , ALCORN R , LEWIS T . Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America[J]. Renewable Energy, 2010, 35 (2): 443- 455.
doi: 10.1016/j.renene.2009.07.003
57 AHMED T, NISHIDA K, NAKAOKA M. The potential for grid power integration of offshore ocean wave energy in the UK[C]//The 2010 International Power Electronics Conference. Sapporo, Japan: IPEC Press, 2010: 3204-3211.
58 AHMED T, NISHIDA K, NAKAOKA M. The commercial advancement of 16 mw offshore wave power generation technologies in the south west of the UK[C]//The 8th International Conference on Power Electronics. Jeju, Korea: ECCE Press, 2011: 1476-1483.
59 POLINDER H, SCUOTTO M. Wave energy converters and their impact on power systems[C]//2005 International Conference on Future Power Systems. Amsterdam, Netherlands: ICFPS Press, 2005: 1-9.
60 AHMED T, NISHIDA K, NAKAOKA M. Grid power integration technologies for offshore ocean wave energy[C]//2010 IEEE Energy Conversion Congress and Exposition. Atlanta, USA: ECCE Press, 2010: 2378-2385.
61 HENDERSON R . Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter[J]. Renewable Energy, 2006, 31 (2): 271- 283.
doi: 10.1016/j.renene.2005.08.021
62 MCCABE A P , BRADSHAW A , MEADOWCROFT J A C , et al. Developments in the design of the PS Frog Mk 5 wave energy converter[J]. Renewable Energy, 2006, 31 (2): 141- 151.
doi: 10.1016/j.renene.2005.08.013
63 RUELLAN M , AHMED H B , MULTON B , et al. Design methodology for a SEAREV wave energy converter[J]. IEEE Trans Energy Conver, 2010, 25 (3): 760- 767.
doi: 10.1109/TEC.2010.2046808
64 BABARIT A, CLEMENT A, RURE J, et al. SEAREV: a fully integrated wave energy converter[C]//Proceedings of the Offshore Wind and Other Marine Renewable Energies in Mediterranean and European Seas. Rome, Italy: IEEE Press, 2006: 1-11.
65 BABARIT A , CLEMENT A . Optimal latching control of a wave energy device in regular and irregular waves[J]. Applied Ocean Research, 2006, 28 (2): 77- 91.
doi: 10.1016/j.apor.2006.05.002
66 张军, 李成龙, 何宏舟, 等. 多浮摆式采能装置水动力性能的时域计算及模型试验[J]. 水动力学研究与进展A辑, 2016, 31 (6): 769- 773.
ZHANG Jun , LI Chenglong , HE Hongzhou , et al. Time-domain simulation and model test on hydrodynamic characteristics of multi-pendulum wave power converter[J]. Journal of Hydrodynamics, 2016, 31 (6): 769- 773.
67 WU Feng , ZHANG X P , JU Ping , et al. Modeling and control of AWS-based wave energy conversion system integrated into power grid[J]. IEEE Trans Power Syst, 2008, 23 (3): 1196- 1204.
doi: 10.1109/TPWRS.2008.922530
68 POLINDER H , MECROW B C , JACK A G . Conventional and TFPM linear generators for direct-drive wave energy conversion[J]. IEEE Trans Energy Conver, 2005, 20 (2): 260- 267.
doi: 10.1109/TEC.2005.845522
69 VALERIO D , BEIRAO P , COSTA J S . Optimisation of wave energy extraction with the Archimedes Wave Swing[J]. Ocean Engineering, 2007, 34 (17/18): 2330- 2344.
70 WEBB C . Wave energy: size matters[J]. Power, 2015, 159 (7): 1- 11.
71 WOOD K . Wave-energy conversion[J]. Compos Technol, 2010, 30 (1): 1- 10.
72 Waveroller Technology. 1 MW Wave Energy Power Plant [EB/OL]. (2015-05-25)[2021-01-23]. http://www.cm-peniche.pt/_uploads/pdf_noticias/waverollerawenergyoyeneolicasagrupolena.pdf.
73 WHITTAKER T , FOLLEY M . Nearshore oscillating wave surge converters and the development of Oyster[J]. Philos T R Soc A, 2012, 370 (1959): 345- 364.
doi: 10.1098/rsta.2011.0152
74 COLLIER D, WHITTAKER T, CROWLEY M. The construction of Oyster a nearshore surging wave energy converter[C]//The 2nd International Conference on Ocean Energy. Brest, France: IEEE Press, 2008: 1-7.
75 BEELS C , TROCH P , DEVISCH K , et al. Application of the time-dependent mild-slope equations for the simulation of wake effects in the lee of a farm of Wave Dragon wave energy converters[J]. Renewable Energy, 2010, 35 (8): 1644- 1661.
doi: 10.1016/j.renene.2009.12.001
76 KOFOED J P , FRIGAARD P , FRIIS-MADSEN E , et al. Prototype testing of the wave energy converter Wave Dragon[J]. Renewable Energy, 2006, 31 (2): 181- 189.
doi: 10.1016/j.renene.2005.09.005
77 TEDD J , KOFOED J P . Measurements of overtopping flow time series on the Wave Dragon, wave energy converter[J]. Renewable Energy, 2009, 34 (3): 711- 717.
doi: 10.1016/j.renene.2008.04.036
78 ZHOU Z, KNAPP W, MACENRI J, et al. Permanent magnet generator control and electrical system configuration for Wave Dragon MW wave energy take-off system[C]//International Symposium on Industrial Electronics. Cambridge, England: IEEE Press, 2008: 1580-1585.
79 EBSCO A. ABS Energy Research[R]. Berkeley, USA: [s. n. ], 2007.
80 MEHLUM E. Commercial tapered channel wave power plants in Australia and Indonesia[C]//Ocean Technologies and Opportunities in the Pacific for the 90′s. Honolulu, USA: [s. n. ], 1991: 535-538.
81 VICINANZA D , FRIGAARD P . Wave pressure acting on a sea wave slot-cone generator[J]. Coastal Engineering, 2008, 55 (6): 553- 568.
doi: 10.1016/j.coastaleng.2008.02.011
82 VICINANZA D , CIARDULLI F , BUCCINO M , et al. Wave loadings acting on an innovative breakwater for energy production[J]. J Coast Res, 2011, 64 (1): 608- 612.
83 LAGOUN M, BENALIA A, BENBOUZID M. Ocean wave converters: state of the art and current status[C]//2010 IEEE International Energy Conference. (S. l. ): IEEE Press, 2010: 636-641.
84 NOAD I , PORTER R . Modelling an articulated raft wave energy converter[J]. Renewable Energy, 2017, 114 (1): 1146- 1159.
85 HEATH T, WHITTAKER T J T, BOAKE C B. The design, construction and operation of the LIMPET wave energy converter[C]//Proceedings of 4th European Wave Energy Conference. Rome, Italy: IEEE Press, 2000: 49-55.
86 MCCORMICK M E , MCCABE R P , KRAEMER D . Utilization of a hinged-barge wave energy conversion system[J]. International Journal of Electric Power, 1999, 19 (1): 11- 16.
87 TORRE Y, ORTUBIA I, LÓPEZ L I, et al. Mutriku wave power plant: from the thinking out to the reality[C]//Proceedings of the 8th European Wave Tidal Energy Conference. Uppsala, Sweden: IEEE Press, 2009: 319-329.
88 TETHYS P N. Mutriku wave power plant [EB/OL]. (2015-05-25)[2021-01-23]. http://tethys.pnnl.gov/project-sites/mutriku-wave-power-plant.
89 HOTTA H, MIYAZAKI T, ISHII S. On the perfor-mance of the wave power device Kaimei[C]//Proceedings of 7th International Conference Offshore Mechanics and Arctic Engineering. New York, USA: ICOMAE Press, 1988: 91-96.
90 LCOP A. The LEANCON wave energy device [EB/OL]. (2016-10-12)[2021-01-23]. http://www.leancon.com.
91 MAWOOA D, LATCHOOMUN L, KAULLY R G, et al. An overview of wave energy technologies in the Mauritian context[C]//2018 5th International Symposium on Environment-friendly Energies and Applications (EFEA). Rome, Italy: IEEE Press, 2018: 1-6.
92 VICINANZA D , MARGHERITINI L , KOFOED J P , et al. The SSG wave energy converter: performance, status and recent developments[J]. Energies, 2012, 5 (2): 193- 226.
doi: 10.3390/en5020193
93 KOFOED J P , FRIGAARD P , FRIIS MADSEN E , et al. Prototype testing of the wave energy converter wave dragon[J]. Renewable Energy, 2006, 31 (2): 181- 189.
doi: 10.1016/j.renene.2005.09.005
94 BEELS C , TROCH P , VISCH K , et al. Application of the time dependent mild-slope equations for the simulation of wake effects in the lee of a farm of Wave Dragon wave energy converters[J]. Renewable Energy, 2010, 35 (1): 1644- 1661.
95 OPTCOP M. PowerBuoy. PowerBuoy wave energy converter [EB/OL]. (2005-12-19)[2021-01-23]. https://www.oceannews.com/news/energy/ocean-power-technologies-signs-agreement-with-premier-oil.
96 KRAMER M M, MARQUIS L, FRIGAARD P, et al. Performance evaluation of the Wavestar prototype[C]//Proceedings of the 9th European Wave Tidal and Energy Conference. Southampton, UK: EWTEC Press, 2011: 1-7.
97 MARQUIS L, KRAMER M. Introduction of Wavestar wave energy converters at the Danish offshore wind power plant Horns Rev 2[C]//Proceedings of the 4th International Conference on Ocean Energy. Dublin, Ireland: ICOE Press, 2012: 1-7.
98 DREW B , PLUMMER A , SAHINKAYA M N . A review of wave energy converter technology[J]. the Institution of Mechanical Engineers, 2009, 223, 887- 902.
doi: 10.1243/09576509JPE782
99 BPSCO E B. BioWAVE wave energy converter [EB/OL]. (2001-11-16)[2021-01-23]. http://bps.energy/biowave.
100 ZHANG H , AGGIDIS G A . Nature rules hidden in the biomimetic wave energy converters[J]. Renewable and Sustainable Energy Reviews, 2018, 97 (18): 28- 37.
101 王坤林, 游亚戈, 张亚群. 海岛可再生独立能源电站能量管理系统[J]. 电力系统自动化, 2010, 34 (14): 13- 17.
WANG Kunlin , YOU Yage , ZHANG Yaqun . Energy management system of renewable stand-alone energy power generation system in an island[J]. Automation of Electric Power Systems, 2010, 34 (14): 13- 17.
102 游亚戈, 盛松伟, 吴必军. 海洋波浪能发电技术现状与前景[C]//第十五届中国海洋(岸)工程学术讨论会论文集(上). 太原, 中国: 中国海洋学会, 2011: 9-16.
YOU Yage, SHENG Songwei, WU Bijun. Current status and prospect of wave energy technologies[C]//Proceedings of the 15th China Ocean (Onshore) Engineering Conference. Taiyuan: CSOC Press, 2011: 9-16.
103 王锰, 李蒙, 夏增艳, 等. 浮力摆式波浪发电装置模型试验[J]. 海洋技术, 2013, 32 (1): 79- 82.
WANG Meng , LI Meng , XIA Zengyan , et al. Model test of buoyant pendulum wave-power generation device[J]. Ocean Technolgy, 2013, 32 (1): 79- 82.
104 ZHAO Haitao , SHEN Jiafa . An experimental study on hydrodynamic performance of a bottom-hinged flap wave energy converter[J]. Journal of Ship Mechanics, 2013, 17 (1): 1097- 1106.
105 熊焰, 王海峰, 崔琳, 等. 大管岛多能互补独立发电系统的发电量设计[J]. 海洋技术, 2009, 28 (1): 101- 103.
doi: 10.3969/j.issn.1003-2029.2009.01.025
XIONG Yan , WANG Haifeng , CUI Lin , et al. Study on power generation design of stand-alone hybrid power system in Daguan island[J]. Ocean Technology, 2009, 28 (1): 101- 103.
doi: 10.3969/j.issn.1003-2029.2009.01.025
106 LIU Y J, LI Y, LIU J B. 120 kW floating buoy hydraulic wave energy convent device[C]//Proceedings of the 2nd China Ocean Renewable Energy Develo-pment Annual Conference. Beijing: IEEE Press, 2013: 1-5.
107 史宏达, 王传崑. 我国海洋能技术的进展与展望[J]. 太阳能, 2017, 3, 30- 37.
SHI Hongda , WANG Chuankun . Progress and prospect of Marine energy technology in China[J]. Solar Energy, 2017, 3, 30- 37.
108 O'CONNOR M , LEWIS T , DALTON G . Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe[J]. Renewable Energy, 2013, 50 (1): 889- 900.
109 BABARIT A , HALS J , MULIAWAN M J , et al. Numerical benchmarking study of a selection of wave energy converters[J]. Renewable Energy, 2012, 41 (2): 44- 63.
110 BABARIT A . A database of capture width ratio of wave energy converters[J]. Renewable Energy, 2015, 80 (2): 610- 628.
111 谢典, 顾煜炯, 余志文, 等. 波浪能发电装置的性能分析及综合评价[J]. 水力发电学报, 2017, 8, 115- 122.
XIE Dian , GU Yujiong , YU Zhiwen , et al. Performance analysis and comprehensive evaluation of wave energy power generation devices[J]. Journal of Hydroelectric Engineering, 2017, 8, 115- 122.
112 UIHLEIN A , MAGAGNA D . Wave and tidal current energy: a review of the current state of research beyond technology[J]. Renewable and Sustainable Energy Reviews, 2016, 58 (16): 1070- 1081.
113 ROY A , AUGER F , DUPRIEZ-ROBIN F , et al. Electrical power supply of remote maritime areas: a review of hybrid systems based on marine renewable energies[J]. Energies, 2018, 11 (4): 1- 27.
114 PÉREZ-COLLAZO C , GREAVES D , IGLESIAS G . A review of combined wave and offshore wind energy[J]. Renewable and Sustainable Energy Reviews, 2015, 42 (3): 141- 153.
115 YANG S, HE G, ZHANG H. Design and development of wave energy- wind energy hybrid power generation system[C]//2nd International Conference of Energy Engineering and Environment Engineering. Hong Kong, China: IEEE Press, 2014: 1-5.
[1] 吴华春, 谢思源, 陈昌皓. 磁悬浮作动器的串级PID控制设计与试验[J]. 山东大学学报 (工学版), 2018, 48(4): 88-93.
[2] 赵晔,何潇,周东华. 带有不准确测量噪声的最小二乘故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 254-262.
[3] 李利平1,路为1,2,李术才1,张庆松1,许振浩1,石少帅1. 地下工程突水机理及其研究最新进展[J]. 山东大学学报(工学版), 2010, 40(3): 104-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[8] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[9] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[10] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .