山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 128-134.doi: 10.6040/j.issn.1672-3961.0.2015.210
• • 上一篇
管宁1,栾涛1*,刘志刚2,张承武2,姜桂林2,邱德来2
GUAN Ning1, LUAN Tao1*, LIU Zhigang2, ZHANG Chengwu2, JIANG Guilin2, QIU Delai2
摘要: 为探索变加热功率下微肋阵热沉内的对流换热规律,采用精密机械加工获得圆形、菱形和三角形微肋阵热沉,建立一体式加热试验系统,测试了微肋阵热沉的压力降、流动阻力系数、热阻等对流换热参数,研究Re为0~1 000时微肋阵内阻力及对流换热受加热功率的影响规律。研究结果表明,微肋阵内阻力系数先随加热功率增加而增大,圆形和菱形截面微肋阵中该现象在Re>400时消失,而三角形微肋阵在Re>250时消失。加热功率的增加强化了圆形和菱形截面微肋阵内的对流换热,三角形微肋阵的Nu在Re<250时随加热功率的增加而增大,当Re>250后则有所降低;加热功率对于圆形和菱形微肋阵热沉热阻的影响在Re<600时较为明显,而对于三角形微肋阵当Re>250后加热功率对于热阻的影响基本可以忽略。
中图分类号:
[1] MOHAMMAD M M, KOK-CHEONG W, MANSOOR S. Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels[J]. International Journal of Commumications in Heat and Mass Transfer, 2012, 39(2): 291-297. [2] HAMID R S, MORTEZA F. Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks[J]. International Journal of Thermal Science, 2012, 58:168-179. [3] PELES Y, KO??塁AR A, MISHRA C, et al. Forced convective heat transfer across a pin fin micro heat sink[J]. International Journal of Heat and Mass Transfer, 2005, 48(17):3615-3627. [4] KO??塁AR A, MISHRA C, PELES Y. Laminar flow across a bank of low aspect ratio micro pin fins[J]. Journal of Fluids Engineering, 2005, 127(3):419-430. [5] KO??塁AR A, PELES Y. Thermal-hydraulic performance of MEMES-based pin fin heat sink[J]. Journal of Heat Transfer, 2006, 128(2):121-131. [6] MUSTAFA K, MEHMED R O, KO??塁AR A. Parametric study on the effect of end walls on heat transfer and fluidflow across a micro pin-fin[J]. International Journal of Thermal Science, 2011, 50(6):1073-1084. [7] CHANG S W Y W HU. Endwall thermal of performances of radially rotating rectangular channel with pin-fins on skewed rib lands [J]. International Journal of Heat and Mass Transfer, 2014, 69:173-190. [8] 张承武,刘志刚,管宁.加热热通量对微柱群通道内强迫对流换热的影响[J].化工学报,2010,61(12):3080-3085. ZHANG Chengwu, LIU Zhiang, GUAN Ning. Influence of heat flux on forced convective heat transfer in duct with micro-cylinder-group [J]. CIESC Journal, 2010, 61(12):3080-3085. [9] 张承武,浦龙梅,姜桂林等.不同截面形状微肋片内流动阻力特性[J].化工学报,2014,65(6):2042-2048. ZHANG Chengwu, PU Longmei, JIANG Guilin, et al. Resistance characteristics of micro pin fins with different cross-section shapes[J]. CIESC Journal, 2014, 65(6):2042-2048. [10] TULLIUS J F, TULLIUS T K, Bayazitoglu Y. Optimization of short micro pin fins in minichannels[J]. International Journal of Heat and Mass Transfer, 2012, 55(15-16):3921-3932. [11] ADEWUMI O O, BELLO-OCHENDE T, MEYER J P. Constructal design of combined microchannel and micro pin fins for electronic cooling[J]. International Journal of Heat and Mass Transfer, 2013, 66:315-323. [12] MOORES K A, KIM J, JOSHI Y. Effect of tip clearance on the thermal and hydrodynamic performance of shrouded pin fin arrays[D]. Maryland: Department of Mechanical Engineering, University of Maryland, 2008. [13] MOORES K A, KIM J, JOSHI Y K. Heat transfer and fluid flow in shrouded pin fin arrays with and without tip clearance[J]. International Journal of Heat and Mass Transfer, 2009, 52(25-26):5978-5989. [14] REINHARD R, GABRIEL L, KEITH C, et al. Heat transfer in freestanding microchannels with in-line and staggered pin fin structures with clearance[J]. International Journal of Heat and Mass Transfer, 2013, 67:1-15. [15] MEI D Q, LOU XY, QIAN M, et al. Effect of tip clearance on the heat transfer and pressure drop performance in the micro-reactor with micro-pin-fin arrays at low Reynolds number[J]. International Journal of Heat and Mass Transfer, 2014, 70:709-718. [16] REYES M, ARIAS J R, VELAZQUEZ A, et al. Experimental study of heat transfer and pressure drop in micro-channel based heat sinks with tip clearance[J]. Applied Thermal Engineering, 2011, 31(5):887-893. [17] 刘志刚,张承武,管宁.叉排微柱群内顶部间隙对传热效率的影响[J].化工学报,2012,63(4):1025-1031. LIU Zhigang, ZHANG Chengwu, GUAN Ning. Influence of tip clearance on heat transfer efficiency in staggered micro-cylinders-group[J]. CIESC Journal, 2012, 63(4):1025-1031. [18] SHAHABEDDIN K M, YUWEN Z. Analysis of nanofluid effects on thermoelectric cooling by micro-pin-fin heat exchangers[J]. Applied Thermal Engineering, 2014, 70(1):282-290. [19] MUSHTAQ I H. Investigation of flow and heat transfer characteristics in micro pin fin heat sink with nano fluid[J]. Applied Thermal Engineering, 2014, 63(2):598-607. [20] ABAS A, JIMENEZ G, DULIKRAVICH G S. Thermo-fluid analysis of micro pin fin array cooling cofigurations for high heat fluxes with a hot spot[J]. International Journal of Thermal Science, 2015, 90:290-297. [21] MOFFAT R J. Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1988, 1(1):3-17. |
[1] | 刘健,胡南琦,徐宝军,岳秀丽,齐泊良,仲奇. 水泥基土石坝防渗注浆材料试验[J]. 山东大学学报(工学版), 2018, 48(2): 39-45. |
[2] | 王丹华,张冠敏,冷学礼,徐梦娜,韩圆圆. T型管内两相流分配特性数值模拟[J]. 山东大学学报(工学版), 2018, 48(1): 89-95. |
[3] | 李连祥,李先军. 不同扩径体数量、位置对支盘桩承载力的影响[J]. 山东大学学报(工学版), 2016, 46(5): 88-94. |
[4] | 吴艳艳, 孙奉仲, 李飞, 陈昌贤. H型翅片管束空气流动及换热特性[J]. 山东大学学报(工学版), 2014, 44(6): 90-94. |
[5] | 冀翠莲, 韩吉田, 尹静, 陈常念, 任立波, 孔令健. 螺旋管内流动沸腾传热系数关联式拟合与误差分析[J]. 山东大学学报(工学版), 2014, 44(5): 83-87. |
[6] | 张涛, 韩吉田, 闫素英, 于泽庭, 周然. 太阳能真空管的热性能分析与测试[J]. 山东大学学报(工学版), 2014, 44(4): 76-83. |
[7] | 陈昌贤, 孙奉仲, 李飞, 吴艳艳. 四分仓回转式空气预热器热力计算方法[J]. 山东大学学报(工学版), 2014, 44(4): 58-63. |
[8] | 李飞, 孙奉仲, 史月涛, 马磊. 圆管管束特性试验及协同分析[J]. 山东大学学报(工学版), 2014, 44(4): 70-75. |
[9] | 程屾, 孙奉仲*. 渗层不锈钢管束表面真空下换热特性的实验分析[J]. 山东大学学报(工学版), 2014, 44(1): 90-94. |
[10] | 车翠翠,田茂诚*,冷学礼. 翼片诱导纵向涡强化层流对流传热数值模拟[J]. 山东大学学报(工学版), 2013, 43(5): 104-110. |
[11] | 谭鲁志,韩吉田*,陈常念,孔令健,冀翠莲,逯国强. 卧式螺旋管临界热流密度的流体模化[J]. 山东大学学报(工学版), 2013, 43(3): 87-93. |
[12] | 吕明新1,2,宋固1,董震1,魏露露1, 赖艳华1*. 两级反射线性菲涅尔中高温集热系统热性能[J]. 山东大学学报(工学版), 2013, 43(2): 105-110. |
[13] | 张井志,田茂诚*,张冠敏,冷学礼. 板式换热器触点分布对换热阻力性能的影响[J]. 山东大学学报(工学版), 2012, 42(6): 121-126. |
[14] | 姜波1,田茂诚2*,郝卫东1, 刘福国1. 新型弹性管束固有振动特性实验及数值模拟[J]. 山东大学学报(工学版), 2012, 42(4): 132-136. |
[15] | 王虹入1,王中秋1, 3*, 张倩2,李剑峰3, 孙杰3. 切削法构建铝合金Al7050-T7451材料流动应力本构模型[J]. 山东大学学报(工学版), 2012, 42(1): 115-120. |
|