您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 83-87.doi: 10.6040/j.issn.1672-3961.0.2014.020

• 能源与动力工程 • 上一篇    下一篇

螺旋管内流动沸腾传热系数关联式拟合与误差分析

冀翠莲1,2, 韩吉田1, 尹静2, 陈常念1, 任立波1, 孔令健1   

  1. 1. 山东大学能源与动力工程学院, 山东 济南 250061;
    2. 山东城市建设职业学院市政与环境工程系, 山东 济南 250103
  • 收稿日期:2014-01-13 修回日期:2014-09-18 发布日期:2014-01-13
  • 通讯作者: 韩吉田(1961-), 男, 山东莱阳人, 教授, 博士生导师, 主要研究方向为两相流传热.E-mail:jthan@sdu.edu.cn E-mail:jthan@sdu.edu.cn
  • 作者简介:冀翠莲(1975-), 女, 山东菏泽人, 讲师, 博士, 主要研究方向为两相流传热传质.E-mail:jicuilian75@163.com
  • 基金资助:
    国家自然科学基金资助项目(51076084);省建设厅科技计划资助项目(2012yk045);山东省高等学校青年骨干教师国内访问资助项目。

Fitting heat transfer coefficient correlation on flow boiling and error analysis for the helically coiled tube

JI Cuilian1,2, HAN Jitian1, YIN Jing2, CHEN Changnian1, REN Libo1, KONG Lingjian1   

  1. 1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. Municipal and Environmental Engineering Department, Shandong Urban Construction Vocational College, Jinan 250103, Shandong, China
  • Received:2014-01-13 Revised:2014-09-18 Published:2014-01-13

摘要: 为了发展适于螺旋管内流动沸腾传热系数关联式,基于流动沸腾传热机理,引入参数Dn数来修正复杂管道对传热系数的影响,并经过回归计算确定Dn数的指数,从而发展了螺旋管内流动沸腾传热系数关联式。进一步分析了传热系数预测值与实验值的偏差随流量、干度的变化情况。利用以R134a为介质的螺旋管传热实验数据验证了该关联式的适用性,并采用平均相对误差(the mean relative error, MRE)和均方根误差(the root mean square error, RMSE)来衡量预测结果的准确性,计算出MRE在8.23%范围内,RMSE为0.532。该平均相对误差值和均方根误差值都比较小,表明回归计算结果符合要求。因此,复杂管道引入参数Dn数建立传热系数关联式是非常适用的,并值得推广应用。

关键词: 流动沸腾, 传热系数关联式, 传热, 螺旋管, 两相流

Abstract: In order to develop flow boiling heat transfer coefficient correlations for helically coiled tube, based on the mechanism of flow boiling heat transfer. The Dn factor was introduced to consider complex pipeline effects on flow boiling heat transfer. The index of the Dn factor was gained by using the regression method. And relation of the ratio of the experimental and predicted values with the mass flow rate and vapor quality was further analyzed. A new heat transfer coefficient correlation of flow boiling in helically coiled tube was developed. The applicability for the heat transfer coefficient correlation was validated by experimental data of flow boiling heat transfer in helically coiled tube with R134a. The MRE and the RMSE were used to measure the accuracy of regression results, with MRE and RMSE being 8.23% and 0.532, respectively. The MRE and the RMSE were small, the regression results conformed to the requirements. Therefore, the method is very applicable, and is worthy of popularization.

Key words: flow boiling, heat transfer, two-phase flow, helically coiled tube, heat transfer coefficient correlation

中图分类号: 

  • TK 121
[1] 白博峰,郭烈锦.卧式螺旋管内流动沸腾传热研究[J].核科学与工程,1997,17(4):302-308.BAI Bofeng, GUO Liejin.Study on convective boiling heat transfer in horizontal helically coiled tubes[J].Nuclear Science and Engineering, 1997, 17(4):302-308.
[2] 陈常念,韩吉田,邵莉,等.R134a卧式螺旋管内流动沸腾CHF特性研究[J].核动力工程,2010,31(5):76-80.CHEN Changnian, HAN Jitian, SHAO Li, et al.Study on dry-out CHF characteristics of R134a flow boiling in horizontal helically coiled tube[J].Nuclear Power Engineering, 2010, 31(5):76-80.
[3] 郭烈锦,陈学俊,张鸣远.卧式螺旋管内汽水两相流沸腾传热特性研究[J].西安交通大学学报,1994, 28(5):120-124.GUO Liejin, CHEN Xuejun, ZHANG Mingyuan.Research on the forced convective boiling heat transfer characteristics of steam water two-phase flow in horizontal helically coiled tubes[J].Journal of Xian Jiaotong University, 1994, 28(5):120-124.
[4] CHEN C N, HAN J T, JEN T C, et al.Fluid-to-fluid modeling of two-phase flow critical heat flux in horizontal helically coiled tubes[J].Nuclear Engineering and Design, 2011, 241(3):1430-1437.
[5] 邵莉.R134a在卧式螺旋管内的两相流动与传热特性研究[D].济南:山东大学,2009.SHAO Li.Study on two-phase flow and heat transfer characteristics of R134a in helical coils tubes[D].Jinan:Shandong University, 2009.
[6] OWHADI A, BELL K J, CRAIN J.Forced convection boiling inside helically coiled tubes[J].International Journal of Mass Transfer, 1968, 11(11):1179-1793.
[7] KOZEKI M, NARIAI H, FURUKAWA T, et al.A study of helically coiled tube once-through steam generator[J].Bull JSME, 1970, 13(66):1485-1495.
[8] AHMEd M, ELSAYED C, RAYA K, et al.Investigation of flow boiling heat transfer inside small diameter helically coiled tubes[J].International Journal of Refrigeration, 2012, 35(8):2179-2187.
[9] ZHAO L, GUO L J, BAI B F, et al.Convective boiling heat transfer and two-phase flow characteristics inside a small horizontal helically coiled tubing once-through steam generator[J].International Journal of Heat and Mass Transfer, 2003, 46(25):4779-4788.
[10] 邵莉,刘利民,苑伟,等.R134a卧式螺旋管内沸腾两相流型与传热特性实验研究[J].原子能科学技术,2013,47(3):391-396.SHAO Li, LIU Limin, YUAN Wei, et al.Study two-phase patterns and heat transfer of R134a in horizontal helically coiled tube[J].Atomic Energy Science and Technology, 2013, 47(3):391-396.
[11] CHEN J.A correlation for boiling heat transfer to saturated fluids in convective flow[J].I & EC Process Design and Development, 1966, 5(3):322-329.
[12] 邵莉,许之初,韩吉田,等.卧式螺旋管内R134a沸腾两相传热特性实验研究[J].中国电机工程学报,2011,31(8): 62-66.SHAO Li, XU Zhichu, HAN Jitian, et al.Experimental investigations on two-phase flow boiling heat transfer of R134a in helically coiled tube[J].Proceedings of the CSEE, 2011, 31(8):62-66.
[13] GUNGOR K E, WINTERTON R H S.Simplified general correlation for saturated flow boiling and comparisons of correlations with data[J].Chemical Engineering Research and Design, 1987, 65(2):148-156.
[14] CUI W Z, LI L J, XIN M D.A heat transfer correlation of flow boiling in helically coiled tube[J].International Journal of Heat and Mass Transfer, 2006, 49(17-18):2851-2858.
[15] KLIMENKO V V.A generalized correlation for two phase forced flow heat transfer[J].International Journal of Heat and Mass Transfer, 1988, 31(3):541-552.
[16] COLLIER J G.Convective coiling and condensation[C]// 2nd Bdn Mc Graw-Hil.New York:Oxford Press, 1982:211-214.
[17] WBALLEY P B.Boiling,condesatian and gas-liquid flow[M].Oxford:Ciarendon Press, 1987.
[18] LIU Z, WINTERTON R H S.A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation[J].International Journal of Heat and Mass Transfer, 1991, 34(11):2759-2766.
[19] SEBAN R A, MCLAUGHLIN E F.Heat transfer in tube coils with laminar and turbulent flow[J].International Journal of Heat and Mass Transfer, 1963, 6(5):387-390.
[20] COOPER M G.Heat flow rates in saturated nucleate pool boiling—a wide ranging examination using reduced properties[J].Advance Heat Transfer, 1984, 16(3):157-239.
[1] 王丹华,张冠敏,冷学礼,徐梦娜,韩圆圆. T型管内两相流分配特性数值模拟[J]. 山东大学学报(工学版), 2018, 48(1): 89-95.
[2] 管宁,栾涛,刘志刚,张承武,姜桂林,邱德来. 变加热功率下不同形状微肋阵热沉内的对流换热[J]. 山东大学学报(工学版), 2016, 46(2): 128-134.
[3] 吴艳艳, 孙奉仲, 李飞, 陈昌贤. H型翅片管束空气流动及换热特性[J]. 山东大学学报(工学版), 2014, 44(6): 90-94.
[4] 张涛, 韩吉田, 闫素英, 于泽庭, 周然. 太阳能真空管的热性能分析与测试[J]. 山东大学学报(工学版), 2014, 44(4): 76-83.
[5] 陈昌贤, 孙奉仲, 李飞, 吴艳艳. 四分仓回转式空气预热器热力计算方法[J]. 山东大学学报(工学版), 2014, 44(4): 58-63.
[6] 李飞, 孙奉仲, 史月涛, 马磊. 圆管管束特性试验及协同分析[J]. 山东大学学报(工学版), 2014, 44(4): 70-75.
[7] 程屾, 孙奉仲*. 渗层不锈钢管束表面真空下换热特性的实验分析[J]. 山东大学学报(工学版), 2014, 44(1): 90-94.
[8] 车翠翠,田茂诚*,冷学礼. 翼片诱导纵向涡强化层流对流传热数值模拟[J]. 山东大学学报(工学版), 2013, 43(5): 104-110.
[9] 谭鲁志,韩吉田*,陈常念,孔令健,冀翠莲,逯国强. 卧式螺旋管临界热流密度的流体模化[J]. 山东大学学报(工学版), 2013, 43(3): 87-93.
[10] 吕明新1,2,宋固1,董震1,魏露露1, 赖艳华1*. 两级反射线性菲涅尔中高温集热系统热性能[J]. 山东大学学报(工学版), 2013, 43(2): 105-110.
[11] 姜波1,田茂诚2*,郝卫东1, 刘福国1. 新型弹性管束固有振动特性实验及数值模拟[J]. 山东大学学报(工学版), 2012, 42(4): 132-136.
[12] 袁晓豆,史月涛*. 气固两相流绕流H型翅片管流动及积灰特性的数值模拟[J]. 山东大学学报(工学版), 2012, 42(2): 112-117.
[13] 田茂诚1, 姜波2,冷学礼1,程林1. 流体诱导新型弹性管束强化传热实验[J]. 山东大学学报(工学版), 2011, 41(5): 21-25.
[14] 唐玉峰,田茂诚,冷学礼. 螺旋槽管内流动换热场协同分析[J]. 山东大学学报(工学版), 2011, 41(2): 158-162.
[15] 刘芳1,2,陈宝明2,王丽2. 多孔介质对封闭腔体内对流传热传质的影响[J]. 山东大学学报(工学版), 2011, 41(1): 145-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!