您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 34-40.doi: 10.6040/j.issn.1672-3961.0.2016.082

• • 上一篇    下一篇

基于多特征融合的交通标志分类

王斌,常发亮*,刘春生   

  1. 山东大学控制科学与工程学院, 山东 济南 250061
  • 收稿日期:2016-03-07 出版日期:2016-08-20 发布日期:2016-03-07
  • 通讯作者: 常发亮(1965— ),男,山东潍坊人,教授,博导,主要研究方向为机器视觉和模式识别.E-mail: flchang@sdu.edu.cn E-mail:972690196@qq.com
  • 作者简介:王斌(1991— ),男,山东泰安人,硕士研究生,主要研究方向为交通标志检测与识别.E-mail: 972690196@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61273277)

Traffic sign classification based on multi-feature fusion

WANG Bin, CHANG Faliang*, LIU Chunsheng   

  1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2016-03-07 Online:2016-08-20 Published:2016-03-07

摘要: 为有效提高交通标志分类的准确度,提出一种融合全局特征和局部特征的多特征交通标志分类方法。首先提取能够描述标志图像内部纹理信息的局部二值模式(local binary pattern, LBP)特征,再提取能够表示标志图像形状信息的方向梯度直方图(histogram of oriented gradient, HOG)特征和描述图像粗略轮廓信息的全局Gist特征,然后采用线性组合方式,实现特征融合互补,并通过主成分分析(principal components analysis, PCA)法进行数据降维,最后采用支持向量机(support vector machine, SVM)分类器进行交通标志训练与识别。试验结果表明:相对于单一特征的交通标志分类方法,基于多特征融合的算法获得了更高的分类精确度,同时也满足实时性要求。

关键词: 交通标志分类, 局部二值模式, 方向梯度直方图特征, Gist特征, 特征融合

Abstract: In order to effectively improve the accuracy of the traffic sign classification, a new method was proposed through fusing the global and local features. First, local binary pattern(LBP)feature was extracted which could describe the internal texture information of traffic sign image, and then histogram of oriented gradient(HOG)feature which could represent shape information and global gist feature with description of the rough outline of the image information were extracted, and then linear combination was used to achieve feature complementary. The principal component analysis(PCA)was used for data dimensionality reduction. Final traffic sign training and classification was carried out using support vector machine(SVM)classifier. The experiments showed that with respect to a single feature extraction classification of traffic signs, the algorithm based on multi-featured fusion achieveed higher classification accuracy, but also met real-time requirements.

Key words: Gist feature, feature fusion, local binary pattern, traffic sign classification, HOG feature

中图分类号: 

  • TP391.4
[1] 陈龙, 潘志敏, 李清泉, 等. 利用ASIFT算法实现多视角静态交通标志识别[J]. 武汉大学学报·信息科学版, 2013, 38(5):553-556. CHEN Long, PAN Zhimin, LI Qingquan, et al. Multi-view traffic sign recognition based on ASIFT[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5):553-556.
[2] 孙光民, 王晶, 于光宇, 等. 自然背景中交通标志的检测与识别[J]. 北京工业大学学报, 2010, 36(10):1337-1343. SUN Guangmin, WANG Jing, YU Guangyu. The detection and recognition of traffic sign in natural scenes[J]. Journal of Beijing University of Technology, 2010, 36(10):1337-1343.
[3] GREENHALGH J, MIRMEHDI M. Real-time detection and recognition of road traffic signs[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4):1498-1506.
[4] 刘华平, 李建民, 胡晓林, 等. 动态场景下的交通标识检测与识别研究进展[J]. 中国图象图形学报, 2013, 18(5):493-503. LIU Huaping, LI Jianmin, HU Xiaolin, et al. Recent progress in detection and recognition of the traffic signs in dynamic scenes[J]. Journal of Image and Graphics, 2013, 18(5): 493-503.
[5] 谷明琴, 蔡自兴, 李仪, 等. 基于多模型表示的交通标志识别算法设计[J]. 控制与决策, 2013, 28(6): 844-848. GU Mingqin, CAI Zixing, LI Yi, et al. Traffic sign recognition algorithm design based on multi-modal representation[J]. Control and Decision, 2013, 28(6):844-848.
[6] LIU C S, CHANG F L, CHEN Z X. Rapid multiclass traffic sign detection in high-resolution images[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6):2394-2403.
[7] MOGELMOSE A, TRIVEDI M M, MOESLUND T B. Vision-based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4):1484-1479.
[8] 张静, 何明一, 戴玉超, 等. 多特征融合的圆形交通标志检测[J]. 模式识别与人工智能, 2011, 24(2):226-232. ZHANG Jing, HE Mingyi, DAI Yuchao, et al. Multi-feature fusion based circular traffic sign detection[J]. PR & AI, 2011, 24(2):226-232.
[9] KHAN J F, BHUIYAN S M A, ADHAMI R R. Image segmentation and shape analysis for road-sign detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1):83-96.
[10] CIRESAN D, MEIER U, MASCI J, et al. Multi-column deep neural network for traffic sign classification[J]. Neural Networks, 2012, 32(8):333-338.
[11] ZAKLOUTA F, STANCIULESCU B. Real-time traffic sign recognition in three stages[J]. Robotics and Autonomous Systems, 2014, 62(1):16-24.
[12] 曹红根, 袁宝华, 朱辉生. 结合对比度信息与LBP的分块人脸识别[J]. 山东大学学报(工学版), 2012, 42(4):29-34. CAO Honggen, YUAN Baohua, ZHU Huisheng. Recognition of intersected face based on contrast information and local binary pattern[J]. Journal of Shandong University(Engineering Science), 2012, 42(4):29-34.
[13] 刘威, 段成伟, 遇冰, 等. 基于后验HOG特征的多姿态行人检测[J]. 电子学报, 2015, 43(2): 217-224. LIU Wei, DUAN Chengwei, YU Bing, et al. Multi-pose pedestrian detection based on posterior HOG feature[J]. Acta Electronica Sinica, 2015, 43(2):217-224.
[14] OLIVA A, TORRALBA A. Modeling the shape of the scene: a holistic representation of the spatial envelope[J]. International Journal of Computer Vision, 2001, 42(3):145-175.
[15] OLIVA A, TORRALBA A. Building the Gist of a scene: the role of global image features in recognition[J]. Progress in Brain Research: Visual Perception, 2006, 155(2):23-36.
[16] 杨昭, 高隽, 谢昭, 等. 局部Gist特征匹配核的场景分类[J]. 中国图象图形学报, 2013, 18(3):264-270. YANG Zhao, GAO Jun, XIE Zhao, et al. Scene categorization of local Gist feature match kernel[J]. Journal of Image and Graphics, 2013, 18(3):264-270.
[17] 孙伟, 钟映春, 谭志, 等. 多特征融合的室内场景分类研究[J]. 广东工业大学学报, 2015, 32(1):75-79. SUN Wei, ZHONG Yingchun, TAN Zhi, et al. Research on multi-featured fusion for indoor scene recognition[J]. Journal of Guangdong University of Technology, 2015, 32(1):75-79.
[18] WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1):37-52.
[19] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(7):971-987.
[20] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C] //Computer Vision and Pattern Recognition, International Conference on. Beijing, China:IEEE, 2005:886-893.
[21] 李晓宇, 张新峰, 沈兰荪. 支持向量机(SVM)的研究进展[J]. 测控技术, 2006, 25(5):7-12. LI Xiaoyu, ZHANG Xinfeng, SHEN Lansun. Some developments on support vector machine[J]. Measurement & Control Technology, 2006, 25(5): 7-12.
[22] HASTIE T, TIBSHIRANI R. Discriminant adaptive nearest neighbor classification[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1996, 18(6): 607-616.
[23] FREUND Y, SCHIPARE RE. Experiments with a new boosting algorithm[C] //Thirteenth International Conference on Machine Learning. Bari, Italy:Universita' di Bari, 1996:148-156.
[1] 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报 (工学版), 2018, 48(5): 47-54.
[2] 何其佳,刘振丙,徐涛,蒋淑洁. 基于LBP和极限学习机的脑部MR图像分类[J]. 山东大学学报(工学版), 2017, 47(2): 86-93.
[3] 牟春倩,唐雁. 融合整体和局部信息的三维模型检索方法[J]. 山东大学学报(工学版), 2016, 46(6): 48-53.
[4] 项磊, 徐军. 基于HOG特征和滑动窗口的乳腺病理图像细胞检测[J]. 山东大学学报(工学版), 2015, 45(1): 37-44.
[5] 李春雷, 张兆翔, 刘洲峰, 廖亮, 赵全军. 基于纹理差异视觉显著性的织物疵点检测算法[J]. 山东大学学报(工学版), 2014, 44(4): 1-8.
[6] 孔超1,2,张化祥1,2*,刘丽1,2. 基于兴趣区域特征融合的半监督图像检索算法[J]. 山东大学学报(工学版), 2014, 44(3): 22-28.
[7] 曹红根1,袁宝华1,朱辉生2. 结合对比度信息与LBP的分块人脸识别[J]. 山东大学学报(工学版), 2012, 42(4): 29-34.
[8] 蔡念, 张国宏, 楼朋旭, 戴青云. 基于形状和纹理的外观设计专利图像检索方法[J]. 山东大学学报(工学版), 2011, 41(2): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[3] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[4] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[5] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28 -34 .
[6] 张光庆,孔凡玉,李大兴, . Koblitz曲线上抵抗简单功耗分析的有效算法[J]. 山东大学学报(工学版), 2007, 37(3): 78 -80 .
[7] 许延生,刘兴芳 . 模糊聚类迭代模型在水资源承载能力评价中的应用[J]. 山东大学学报(工学版), 2007, 37(3): 100 -104 .
[8] 李善评,胡振,孙一鸣,甄博如,张启磊,曹翰林 . 新型钛基PbO2电极的制备及电催化性能研究[J]. 山东大学学报(工学版), 2007, 37(3): 109 -113 .
[9] 李新平 代翼飞 胡静. 某岩溶隧道围岩稳定性及涌水量预测的流固耦合分析[J]. 山东大学学报(工学版), 2009, 39(4): 1 -6 .
[10] 何东之, 张吉沣, 赵鹏飞. 不确定性传播算法的MapReduce并行化实现[J]. 山东大学学报(工学版), 0, (): 22 -28 .