山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 34-40.doi: 10.6040/j.issn.1672-3961.0.2016.082
王斌,常发亮*,刘春生
WANG Bin, CHANG Faliang*, LIU Chunsheng
摘要: 为有效提高交通标志分类的准确度,提出一种融合全局特征和局部特征的多特征交通标志分类方法。首先提取能够描述标志图像内部纹理信息的局部二值模式(local binary pattern, LBP)特征,再提取能够表示标志图像形状信息的方向梯度直方图(histogram of oriented gradient, HOG)特征和描述图像粗略轮廓信息的全局Gist特征,然后采用线性组合方式,实现特征融合互补,并通过主成分分析(principal components analysis, PCA)法进行数据降维,最后采用支持向量机(support vector machine, SVM)分类器进行交通标志训练与识别。试验结果表明:相对于单一特征的交通标志分类方法,基于多特征融合的算法获得了更高的分类精确度,同时也满足实时性要求。
中图分类号:
[1] 陈龙, 潘志敏, 李清泉, 等. 利用ASIFT算法实现多视角静态交通标志识别[J]. 武汉大学学报·信息科学版, 2013, 38(5):553-556. CHEN Long, PAN Zhimin, LI Qingquan, et al. Multi-view traffic sign recognition based on ASIFT[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5):553-556. [2] 孙光民, 王晶, 于光宇, 等. 自然背景中交通标志的检测与识别[J]. 北京工业大学学报, 2010, 36(10):1337-1343. SUN Guangmin, WANG Jing, YU Guangyu. The detection and recognition of traffic sign in natural scenes[J]. Journal of Beijing University of Technology, 2010, 36(10):1337-1343. [3] GREENHALGH J, MIRMEHDI M. Real-time detection and recognition of road traffic signs[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4):1498-1506. [4] 刘华平, 李建民, 胡晓林, 等. 动态场景下的交通标识检测与识别研究进展[J]. 中国图象图形学报, 2013, 18(5):493-503. LIU Huaping, LI Jianmin, HU Xiaolin, et al. Recent progress in detection and recognition of the traffic signs in dynamic scenes[J]. Journal of Image and Graphics, 2013, 18(5): 493-503. [5] 谷明琴, 蔡自兴, 李仪, 等. 基于多模型表示的交通标志识别算法设计[J]. 控制与决策, 2013, 28(6): 844-848. GU Mingqin, CAI Zixing, LI Yi, et al. Traffic sign recognition algorithm design based on multi-modal representation[J]. Control and Decision, 2013, 28(6):844-848. [6] LIU C S, CHANG F L, CHEN Z X. Rapid multiclass traffic sign detection in high-resolution images[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6):2394-2403. [7] MOGELMOSE A, TRIVEDI M M, MOESLUND T B. Vision-based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4):1484-1479. [8] 张静, 何明一, 戴玉超, 等. 多特征融合的圆形交通标志检测[J]. 模式识别与人工智能, 2011, 24(2):226-232. ZHANG Jing, HE Mingyi, DAI Yuchao, et al. Multi-feature fusion based circular traffic sign detection[J]. PR & AI, 2011, 24(2):226-232. [9] KHAN J F, BHUIYAN S M A, ADHAMI R R. Image segmentation and shape analysis for road-sign detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1):83-96. [10] CIRESAN D, MEIER U, MASCI J, et al. Multi-column deep neural network for traffic sign classification[J]. Neural Networks, 2012, 32(8):333-338. [11] ZAKLOUTA F, STANCIULESCU B. Real-time traffic sign recognition in three stages[J]. Robotics and Autonomous Systems, 2014, 62(1):16-24. [12] 曹红根, 袁宝华, 朱辉生. 结合对比度信息与LBP的分块人脸识别[J]. 山东大学学报(工学版), 2012, 42(4):29-34. CAO Honggen, YUAN Baohua, ZHU Huisheng. Recognition of intersected face based on contrast information and local binary pattern[J]. Journal of Shandong University(Engineering Science), 2012, 42(4):29-34. [13] 刘威, 段成伟, 遇冰, 等. 基于后验HOG特征的多姿态行人检测[J]. 电子学报, 2015, 43(2): 217-224. LIU Wei, DUAN Chengwei, YU Bing, et al. Multi-pose pedestrian detection based on posterior HOG feature[J]. Acta Electronica Sinica, 2015, 43(2):217-224. [14] OLIVA A, TORRALBA A. Modeling the shape of the scene: a holistic representation of the spatial envelope[J]. International Journal of Computer Vision, 2001, 42(3):145-175. [15] OLIVA A, TORRALBA A. Building the Gist of a scene: the role of global image features in recognition[J]. Progress in Brain Research: Visual Perception, 2006, 155(2):23-36. [16] 杨昭, 高隽, 谢昭, 等. 局部Gist特征匹配核的场景分类[J]. 中国图象图形学报, 2013, 18(3):264-270. YANG Zhao, GAO Jun, XIE Zhao, et al. Scene categorization of local Gist feature match kernel[J]. Journal of Image and Graphics, 2013, 18(3):264-270. [17] 孙伟, 钟映春, 谭志, 等. 多特征融合的室内场景分类研究[J]. 广东工业大学学报, 2015, 32(1):75-79. SUN Wei, ZHONG Yingchun, TAN Zhi, et al. Research on multi-featured fusion for indoor scene recognition[J]. Journal of Guangdong University of Technology, 2015, 32(1):75-79. [18] WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1):37-52. [19] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(7):971-987. [20] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C] //Computer Vision and Pattern Recognition, International Conference on. Beijing, China:IEEE, 2005:886-893. [21] 李晓宇, 张新峰, 沈兰荪. 支持向量机(SVM)的研究进展[J]. 测控技术, 2006, 25(5):7-12. LI Xiaoyu, ZHANG Xinfeng, SHEN Lansun. Some developments on support vector machine[J]. Measurement & Control Technology, 2006, 25(5): 7-12. [22] HASTIE T, TIBSHIRANI R. Discriminant adaptive nearest neighbor classification[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1996, 18(6): 607-616. [23] FREUND Y, SCHIPARE RE. Experiments with a new boosting algorithm[C] //Thirteenth International Conference on Machine Learning. Bari, Italy:Universita' di Bari, 1996:148-156. |
[1] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报 (工学版), 2018, 48(5): 47-54. |
[2] | 何其佳,刘振丙,徐涛,蒋淑洁. 基于LBP和极限学习机的脑部MR图像分类[J]. 山东大学学报(工学版), 2017, 47(2): 86-93. |
[3] | 牟春倩,唐雁. 融合整体和局部信息的三维模型检索方法[J]. 山东大学学报(工学版), 2016, 46(6): 48-53. |
[4] | 项磊, 徐军. 基于HOG特征和滑动窗口的乳腺病理图像细胞检测[J]. 山东大学学报(工学版), 2015, 45(1): 37-44. |
[5] | 李春雷, 张兆翔, 刘洲峰, 廖亮, 赵全军. 基于纹理差异视觉显著性的织物疵点检测算法[J]. 山东大学学报(工学版), 2014, 44(4): 1-8. |
[6] | 孔超1,2,张化祥1,2*,刘丽1,2. 基于兴趣区域特征融合的半监督图像检索算法[J]. 山东大学学报(工学版), 2014, 44(3): 22-28. |
[7] | 曹红根1,袁宝华1,朱辉生2. 结合对比度信息与LBP的分块人脸识别[J]. 山东大学学报(工学版), 2012, 42(4): 29-34. |
[8] | 蔡念, 张国宏, 楼朋旭, 戴青云. 基于形状和纹理的外观设计专利图像检索方法[J]. 山东大学学报(工学版), 2011, 41(2): 1-4. |
|