山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1-8.doi: 10.6040/j.issn.1672-3961.2.2013.344
• 机器学习与数据挖掘 • 下一篇
李春雷1, 张兆翔2, 刘洲峰1, 廖亮1, 赵全军1
LI Chunlei1, ZHANG Zhaoxiang2, LIU Zhoufeng1, LIAO Liang1, ZHAO Quanjun1
摘要: 由于织物图像纹理多样化及疵点类别较多,为了更有效地检测织物疵点,结合织物图像特性及借鉴人类视觉感知机理,提出一种基于纹理差异视觉显著性模型的织物疵点检测算法。该算法首先对图像进行分块,计算各个图像块LBP(local binary pattern)纹理特征,与图像块平均纹理特征的相似度比较,进行显著度计算,从而有效突出了疵点区域。最后利用改进阈值分割算法,实现对疵点区域的定位。通过与已有视觉显著性模型进行比较,得出该算法更能有效地突出疵点区域;同时,分割结果与已有织物疵点检测算法相比发现,该算法具有更强的疵点检测及定位能力。
中图分类号:
[1] MARK K, PENG P, YIU K. Fabric defect detection using morphological filters[J]. Image and Vision Computing, 2009, 27(10):1585-1592. [2] 邹超,朱德森,肖力. 基于模糊类别共生矩阵的纹理疵点检测方法[J]. 中国图象图形学报, 2007, 12(1):92-97. ZOU Chao, ZHU Deshen, XIAO Li. Textural defect detection based on fuzzy label co-occurrence matrix[J]. Journal of Image and Graphics, 2007, 12(1):92-97. [3] ZHANG Y, LU Z, LI J. Fabric defect detection and classification using gabor filters and gaussian mixture model[C]//Asian Conf. Computer Vision. Xi'an, Shaanxi, China: Springer, 2009:635-644. [4] SRIKAEWL A, ATTAKIMONGCOL K, KUMSAWAT P, et al. Detection of defect in textile fabrics using optimal gabor wavelet network and two-dimensional PCA[C]//International Symposium on Visual Computing. Las Vegas, Nevada, USA: Springer, 2011: 436-445. [5] TOLBA A. Fast defect detection in homogeneous flat surface products[J]. Expert Systems with Applications, 2011 (38): 12339-12347. [6] CHAN H Y, RAJU C, SARI-SARRAF H, et al. A general approach to defect detection in textured materials using a wavelet domain model and level sets[C]//International Society for Optics and Photonics. Boston, Massachusetts, USA: SPIE, 2005:60010D-60010D-6. [7] ZHANG Y, LU Z, LI J. Fabric defect classification using radial basis function network[J]. Pattern Recognition Letters, 2010, 31(13):2033-2042. [8] HOU X, ZHANG L. Saliency detection: a spectral residual approach[C]//IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA: IEEE, 2007:1-8. [9] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA: IEEE, 2009:1597-1604. [10] JUNG C, KIM C. A unified spectral-domain approach for saliency detection and its application to automatic object segmentation[J]. Image Processing, IEEE Transactions on, 2012, 21(3):1272-1283. [11] HOU X, HAREL J, KOCH C. Image signature: highlighting sparse salient regions[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012, 34(1):194-201. [12] SEO H J, MILANFAR P. Static and space-time visual saliency detection by self-resemblance[J]. Journal of Vision, 2009, 9(12):15-21. [13] HOU X, ZHANG L. Dynamic visual attention: searching for coding length increments[C]// NIPS. Vancouver, B.C., Canada: MIT Press, 2008:5-7. [14] WNG W, CHEN C, WANG Y, et al. Simulating human saccadic scanpaths on natural images[C]// IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA: IEEE, 2011:441-448. [15] GOPALAKRISHNAN V, HU Y, RAJAN D. Random walks on graphs for salient object detection in images[J]. Image Processing, IEEE Transactions on, 2010, 19(12):3232-3242. [16] PORWAY J, WANG Q, ZHU S C. A hierarchical and contextual model for aerial image parsing[J]. International Journal of Computer Vision, 2010, 88(2):254-283. [17] GOFERMAN S, ZELNIK M L, TAL A. Context-aware saliency detection[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012, 34(10):1915-1926. [18] 黄志勇, 何发智, 蔡贤涛, 等. 一种随机的视觉显著性检测算法[J]. 中国科学: 信息科学, 2011, 41(7):863-874. HUANG Zhiyong, HE Fazhi, CAI Xiantao, et al. Efficient random saliency map detection[J]. Science China Information Sciences, 2011, 41(7):863-874. [19] KIM W, KIM C. Saliency detection via textural contrast[J]. Optics Letters, 2012, 37(9):1550-1552. [20] BORJI A, ITTI L. Exploiting local and global patch rarities for saliency detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, Providence. Rhode Island, USA: IEEE, 2012:478-485. [21] MURRAY N, VANRELL M, OTAZU X, et al. Saliency estimation using a non-parametric low-level vision model[C]//IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA: IEEE, 2011:433-440. [22] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2002, 24(7):971-987. [23] OTSU N. A threshold selection method from gray-level histograms[J]. Automatica, 1975, 11(285-296):23-27. [24] NG F. Automatic thresholding for defect detection[J]. Pattern Recognition Letters, 2006, 27(14):1644-1649. [25] LIU Z, WANG J, ZHAO Q, et al. A fabric defect detection algorithm based on improved valley-emphasis method[J]. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7(12):2427-2431. |
[1] | 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报(工学版), 2018, 48(5): 103-108. |
[2] | 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20-26. |
[3] | 王雪琴,李树荣,于妤,王家岩. 带几何约束的彩色图像选择性分割[J]. 山东大学学报(工学版), 2018, 48(2): 22-29. |
[4] | 胡金戈,唐雁. 基于视觉中心转移的视觉显著性检测方法[J]. 山东大学学报(工学版), 2017, 47(3): 27-33. |
[5] | 李璐,范文涛,杜吉祥. 基于Markov随机场的Student's t混合模型的脑MR图像分割[J]. 山东大学学报(工学版), 2017, 47(3): 49-55. |
[6] | 何其佳,刘振丙,徐涛,蒋淑洁. 基于LBP和极限学习机的脑部MR图像分类[J]. 山东大学学报(工学版), 2017, 47(2): 86-93. |
[7] | 王斌,常发亮,刘春生. 基于多特征融合的交通标志分类[J]. 山东大学学报(工学版), 2016, 46(4): 34-40. |
[8] | 乔小燕. 赤潮藻显微图像自动识别方法[J]. 山东大学学报(工学版), 2016, 46(3): 1-6. |
[9] | 樊淑炎, 丁世飞. 基于多尺度的改进Graph cut算法[J]. 山东大学学报(工学版), 2016, 46(1): 28-33. |
[10] | 朱洪锦, 范洪辉, 叶飞跃, 臧海娟. 基于区域合并与轮廓模型的图像序列人物轮廓分割[J]. 山东大学学报(工学版), 2014, 44(6): 8-14. |
[11] | 梁玮1,2,陶亮3,张光先1,李振华1. 基于特征提取和极值搜索的焊接缺陷检测算法[J]. 山东大学学报(工学版), 2014, 44(3): 48-51. |
[12] | 佀君淑,朱文兴*,沙永贺. 复杂背景下的交通信号灯综合识别方法[J]. 山东大学学报(工学版), 2014, 44(2): 64-68. |
[13] | 于海晶1,2, 李桂菊1*. 基于差分盒维数的彩色烟雾图像识别[J]. 山东大学学报(工学版), 2014, 44(1): 35-40. |
[14] | 戚世乐,王美清. 自适应分割弱边缘的活动轮廓模型[J]. 山东大学学报(工学版), 2013, 43(6): 17-20. |
[15] | 管燕,李存华*,仲兆满,孙兰兰. 化学分子结构图分割算法[J]. 山东大学学报(工学版), 2012, 42(5): 65-70. |
|