您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1-8.doi: 10.6040/j.issn.1672-3961.2.2013.344

• 机器学习与数据挖掘 •    下一篇

基于纹理差异视觉显著性的织物疵点检测算法

李春雷1, 张兆翔2, 刘洲峰1, 廖亮1, 赵全军1   

  1. 1. 中原工学院电子信息学院, 河南 郑州 450007;
    2. 北京航空航天大学计算机学院智能识别与图像处理实验室, 北京 100191
  • 收稿日期:2013-04-30 修回日期:2014-06-26 出版日期:2014-08-20 发布日期:2013-04-30
  • 作者简介:李春雷(1979-),男,河南商水人,副教授,博士,主要研究方向为织物图像处理.E-mail:lichunlei1979@gmail.com
  • 基金资助:
    国家自然科学基金资助项目(61202499,61379113);河南省基础与前沿技术研究计划资助项目(132300410163,142300410042)

A novel fabric defect detection algorithm based on textural differential visual saliency model

LI Chunlei1, ZHANG Zhaoxiang2, LIU Zhoufeng1, LIAO Liang1, ZHAO Quanjun1   

  1. 1. School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou 450007, Henan, China;
    2. School of Computer Science and Engineering, Beihang University, Beijing 100191, China
  • Received:2013-04-30 Revised:2014-06-26 Online:2014-08-20 Published:2013-04-30

摘要: 由于织物图像纹理多样化及疵点类别较多,为了更有效地检测织物疵点,结合织物图像特性及借鉴人类视觉感知机理,提出一种基于纹理差异视觉显著性模型的织物疵点检测算法。该算法首先对图像进行分块,计算各个图像块LBP(local binary pattern)纹理特征,与图像块平均纹理特征的相似度比较,进行显著度计算,从而有效突出了疵点区域。最后利用改进阈值分割算法,实现对疵点区域的定位。通过与已有视觉显著性模型进行比较,得出该算法更能有效地突出疵点区域;同时,分割结果与已有织物疵点检测算法相比发现,该算法具有更强的疵点检测及定位能力。

关键词: 疵点检测, 织物疵点, 局部二值模式, 纹理差异, 分割, 视觉显著性

Abstract: In order to effectively detect defect for fabirc image with variety of defects and complex texture, a novel fabric defect detection scheme based on textural difference-based visual saliency model was proposed, which considered the characteristics of fabric image and human visual perception. First, the test image was split into image blocks, and textural feature was extracted using LBP operator for each image block. Second, saliency was calculated by comparing their textural feature with the average texture feature. Finally, the threshold segmentation algorithm was used to localize the defect region. Comparing with the current saliency model, the proposed saliency model could effectively distinguish the defect. In addition, segmentation scheme was superior to the current defect detection algorithm in detection and localization.

Key words: fabric defect, defect detection, textural difference, segment, visual saliency, local binary pattern

中图分类号: 

  • TP391
[1] MARK K, PENG P, YIU K. Fabric defect detection using morphological filters[J]. Image and Vision Computing, 2009, 27(10):1585-1592.
[2] 邹超,朱德森,肖力. 基于模糊类别共生矩阵的纹理疵点检测方法[J]. 中国图象图形学报, 2007, 12(1):92-97. ZOU Chao, ZHU Deshen, XIAO Li. Textural defect detection based on fuzzy label co-occurrence matrix[J]. Journal of Image and Graphics, 2007, 12(1):92-97.
[3] ZHANG Y, LU Z, LI J. Fabric defect detection and classification using gabor filters and gaussian mixture model[C]//Asian Conf. Computer Vision. Xi'an, Shaanxi, China: Springer, 2009:635-644.
[4] SRIKAEWL A, ATTAKIMONGCOL K, KUMSAWAT P, et al. Detection of defect in textile fabrics using optimal gabor wavelet network and two-dimensional PCA[C]//International Symposium on Visual Computing. Las Vegas, Nevada, USA: Springer, 2011: 436-445.
[5] TOLBA A. Fast defect detection in homogeneous flat surface products[J]. Expert Systems with Applications, 2011 (38): 12339-12347.
[6] CHAN H Y, RAJU C, SARI-SARRAF H, et al. A general approach to defect detection in textured materials using a wavelet domain model and level sets[C]//International Society for Optics and Photonics. Boston, Massachusetts, USA: SPIE, 2005:60010D-60010D-6.
[7] ZHANG Y, LU Z, LI J. Fabric defect classification using radial basis function network[J]. Pattern Recognition Letters, 2010, 31(13):2033-2042.
[8] HOU X, ZHANG L. Saliency detection: a spectral residual approach[C]//IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA: IEEE, 2007:1-8.
[9] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA: IEEE, 2009:1597-1604.
[10] JUNG C, KIM C. A unified spectral-domain approach for saliency detection and its application to automatic object segmentation[J]. Image Processing, IEEE Transactions on, 2012, 21(3):1272-1283.
[11] HOU X, HAREL J, KOCH C. Image signature: highlighting sparse salient regions[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012, 34(1):194-201.
[12] SEO H J, MILANFAR P. Static and space-time visual saliency detection by self-resemblance[J]. Journal of Vision, 2009, 9(12):15-21.
[13] HOU X, ZHANG L. Dynamic visual attention: searching for coding length increments[C]// NIPS. Vancouver, B.C., Canada: MIT Press, 2008:5-7.
[14] WNG W, CHEN C, WANG Y, et al. Simulating human saccadic scanpaths on natural images[C]// IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA: IEEE, 2011:441-448.
[15] GOPALAKRISHNAN V, HU Y, RAJAN D. Random walks on graphs for salient object detection in images[J]. Image Processing, IEEE Transactions on, 2010, 19(12):3232-3242.
[16] PORWAY J, WANG Q, ZHU S C. A hierarchical and contextual model for aerial image parsing[J]. International Journal of Computer Vision, 2010, 88(2):254-283.
[17] GOFERMAN S, ZELNIK M L, TAL A. Context-aware saliency detection[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012, 34(10):1915-1926.
[18] 黄志勇, 何发智, 蔡贤涛, 等. 一种随机的视觉显著性检测算法[J]. 中国科学: 信息科学, 2011, 41(7):863-874. HUANG Zhiyong, HE Fazhi, CAI Xiantao, et al. Efficient random saliency map detection[J]. Science China Information Sciences, 2011, 41(7):863-874.
[19] KIM W, KIM C. Saliency detection via textural contrast[J]. Optics Letters, 2012, 37(9):1550-1552.
[20] BORJI A, ITTI L. Exploiting local and global patch rarities for saliency detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, Providence. Rhode Island, USA: IEEE, 2012:478-485.
[21] MURRAY N, VANRELL M, OTAZU X, et al. Saliency estimation using a non-parametric low-level vision model[C]//IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA: IEEE, 2011:433-440.
[22] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2002, 24(7):971-987.
[23] OTSU N. A threshold selection method from gray-level histograms[J]. Automatica, 1975, 11(285-296):23-27.
[24] NG F. Automatic thresholding for defect detection[J]. Pattern Recognition Letters, 2006, 27(14):1644-1649.
[25] LIU Z, WANG J, ZHAO Q, et al. A fabric defect detection algorithm based on improved valley-emphasis method[J]. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7(12):2427-2431.
[1] 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报(工学版), 2018, 48(5): 103-108.
[2] 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20-26.
[3] 王雪琴,李树荣,于妤,王家岩. 带几何约束的彩色图像选择性分割[J]. 山东大学学报(工学版), 2018, 48(2): 22-29.
[4] 胡金戈,唐雁. 基于视觉中心转移的视觉显著性检测方法[J]. 山东大学学报(工学版), 2017, 47(3): 27-33.
[5] 李璐,范文涛,杜吉祥. 基于Markov随机场的Student's t混合模型的脑MR图像分割[J]. 山东大学学报(工学版), 2017, 47(3): 49-55.
[6] 何其佳,刘振丙,徐涛,蒋淑洁. 基于LBP和极限学习机的脑部MR图像分类[J]. 山东大学学报(工学版), 2017, 47(2): 86-93.
[7] 王斌,常发亮,刘春生. 基于多特征融合的交通标志分类[J]. 山东大学学报(工学版), 2016, 46(4): 34-40.
[8] 乔小燕. 赤潮藻显微图像自动识别方法[J]. 山东大学学报(工学版), 2016, 46(3): 1-6.
[9] 樊淑炎, 丁世飞. 基于多尺度的改进Graph cut算法[J]. 山东大学学报(工学版), 2016, 46(1): 28-33.
[10] 朱洪锦, 范洪辉, 叶飞跃, 臧海娟. 基于区域合并与轮廓模型的图像序列人物轮廓分割[J]. 山东大学学报(工学版), 2014, 44(6): 8-14.
[11] 梁玮1,2,陶亮3,张光先1,李振华1. 基于特征提取和极值搜索的焊接缺陷检测算法[J]. 山东大学学报(工学版), 2014, 44(3): 48-51.
[12] 佀君淑,朱文兴*,沙永贺. 复杂背景下的交通信号灯综合识别方法[J]. 山东大学学报(工学版), 2014, 44(2): 64-68.
[13] 于海晶1,2, 李桂菊1*. 基于差分盒维数的彩色烟雾图像识别[J]. 山东大学学报(工学版), 2014, 44(1): 35-40.
[14] 戚世乐,王美清. 自适应分割弱边缘的活动轮廓模型[J]. 山东大学学报(工学版), 2013, 43(6): 17-20.
[15] 管燕,李存华*,仲兆满,孙兰兰. 化学分子结构图分割算法[J]. 山东大学学报(工学版), 2012, 42(5): 65-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!