您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (2): 106-113.doi: 10.6040/j.issn.1672-3961.0.2024.022

• 土木工程 • 上一篇    下一篇

基于Wiener退化过程的纤维混凝土抗冻性

银英姿,魏景涛*,泽里罗布,董伟   

  1. 内蒙古科技大学土木工程学院, 内蒙古 包头 014010
  • 发布日期:2025-04-15
  • 作者简介:银英姿(1968— ),女,内蒙古包头人,教授,硕士生导师,博士,主要研究方向为绿色建筑材料. E-mail:811489571@qq.com. *通信作者简介:魏景涛(1997— ),男,河南周口人,硕士研究生,主要研究方向为混凝土耐久性. E-mail:3041411884@qq.com
  • 基金资助:
    国家自然科学基金资助项目(52268044,52168033);内蒙古自治区自然科学基金资助项目(2021LHMS05019);内蒙古自治区直属高校基本科研业务费资助项目(2023QNJS161);内蒙古科技大学建筑科学研究所开放基金资助项目(JYSJJ-2021Q01);内蒙古自治区包头市昆都仑区科技计划资助项目(YF2022021)

Frost resistance of fiber reinforced concrete based on Wiener degradation process

YIN Yingzi, WEI Jingtao*, ZELI Luobu, DONG Wei   

  1. YIN Yingzi, WEI Jingtao*, ZELI Luobu, DONG Wei(School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
  • Published:2025-04-15

摘要: 为探究玄武岩纤维(basalt fiber, BF)对风积沙混凝土(aeolian sand concrete, ASC)耐久性及使用寿命的影响,本试验采用风积沙等质量取代河砂,取代后风积沙质量占混凝土中河砂质量的20%,ASC中BF的体积分数选取0、0.05%、0.10%、0.15%、0.20%,制备玄武岩纤维风积沙混凝土(BF-ASC)。在冻融条件下,研究不同BF体积分数对ASC质量、相对动弹性模量的影响,并通过扫描电镜(scanning electron microscopy, SEM)分析BF-ASC的损伤劣化机理。以BF-ASC试块相对动弹性模量作为退化指标,选用一元Wiener函数进行退化过程建模,预测BF-ASC寿命。结果表明:BF的掺入能够降低ASC的孔隙率,增强粗细骨料之间的黏结力,明显提高混凝土的抗冻性能,降低混凝土冻融损伤程度,当BF体积分数为0.20%时,质量损失率最低,相对动弹性模量评价参数降幅最小,抗冻效果最佳;基于Wiener随机分布以BF-ASC相对动弹性模量作为退化指标所得到的BF-ASC可靠度函数,能够有效预测BF-ASC在盐冻环境下的使用寿命,且当ASC中BF体积分数为0.20%时,最长使用寿命约达2 500 h。

关键词: 风积沙混凝土, 玄武岩纤维, 耐久性, 寿命预测, 一元Wiener

Abstract: In order to explore the impact of basalt fiber(BF)on the durability and service life of aeolian sand concrete(ASC), this experiment used aeolian sand to replaced river sand, and the mass of aeolian sand accounts for 20% of the mass of river sand in the concrete after replacement, and the basalt fiber aeolian sand concrete(BF-ASC)was prepared under the conditions of 0, 0.05%, 0.10%, 0.15%, and 0.20% BF content. The effects of different BF content on concrete mass and relative dynamic elastic modulus were studied, and the damage and deterioration mechanisms of BF-ASC was analyzed by scanning electron microscopy(SEM). With the relative dynamic elastic modulus of BF-ASC test block as the degradation index, a single Wiener function was used to model the degradation process and predict the life of BF-ASC. The results showed that adding BF could reduce the porosity of ASC, enhance the bonding strength between coarse and fine aggregates, significantly improve the frost resistance of concrete, and reduce the freeze-thaw damage degree of concrete. When the volume fraction of BF was 0.20%, the mass loss rate was the lowest, the relative dynamic elastic modulus evaluation parameter had the smallest decrease, and the frost resistance effect was the best; The reliability function of BF-ASC obtained based on Wiener random distribution with BF-ASC relative dynamic elastic modulus as the degradation index could effectively predict the service life of BF-ASC in salt freezing environment, and the longest service life could reach about 2 500 hours when the BF volume fraction was 0.20%.

Key words: wind sand concrete, basalt fiber, durability, life prediction, unary Wiener

中图分类号: 

  • TU528
[1] 褚洪岩, 蒋金洋, 李荷, 等. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033. CHU Hongyan, JIANG Jinyang, LI He, et al. Effects of eco-friendly fine aggregates on mechanical properties of ultra-high performance concrete[J]. Materials Reports, 2020, 34(24): 24029-24033.
[2] 薛慧君, 申向东, 刘倩, 等. 高寒灌区风沙吹蚀对农业水利工程混凝土抗冻耐久性的影响[J]. 农业工程学报, 2017, 33(15): 133-140. XUE Huijun, SHEN Xiangdong, LIU Qian, et al. Effect of wind-sand erosion on frost resistance durability of hydraulic engineering concrete in cold irrigation area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 133-140.
[3] XUE H J, SHEN X D, LIU Q, et al. Analysis of the damage to the aeolian sand concrete surfaces caused by wind-sand erosion[J]. Journal of Advanced Concrete Technology, 2017, 15(12): 724-737.
[4] ZHANG M H, ZHU X Z, SHI J Y, et al. Utilization of desert sand in the production of sustainable cement-based materials: a critical review[J]. Construction and Building Materials, 2022, 327: 127014.
[5] 吴俊臣, 申向东. 风积沙混凝土的抗冻性与冻融损伤机理分析[J]. 农业工程学报, 2017, 33(10): 184-190. WU Junchen, SHEN Xiangdong. Analysis on frost resistance and damage mechanism of aeolian sand concrete[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 184-190.
[6] ELIPE M G M, LÓPEZ-QUEROL S. Aeolian sands: characterization, options of improvement and possible employment in construction-the state-of-the-art[J]. Construction and Building Materials, 2014, 73:728-739.
[7] 刘超, 林鑫, 刘化威, 等. 风积沙与再生复合微粉对超高性能混凝土力学性能的影响[J]. 复合材料学报, 2022, 39(11): 5415-5422. LIU Chao, LIN Xin, LIU Huawei, et al. Effect of aeolian sand and recycled composite micro-powder on mechanical properties of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5415-5422.
[8] 王尧鸿, 楚奇, 韩青. 库布齐风积沙对各分级河砂的填充效应[J]. 建筑材料学报, 2021, 24(1): 191-198. WANG Yaohong, CHU Qi, HAN Qing. Filing effect of Kubuqi aeolian sand on different classifications of river sand[J]. Journal of Building Materials, 2021, 24(1): 191-198.
[9] 刘超, 林鑫, 朱超, 等. 风积沙应用于混凝土的研究进展[J]. 材料科学与工程学报, 2022, 40(4): 695-705. LIU Chao, LIN Xin, ZHU Chao, et al. Research progress on application of aeolian sand in concrete[J]. Journal of Materials Sciene and Engineering, 2022, 40(4): 695-705.
[10] MONALDO E, NERILLI F, VAIRO G. Basalt-based fiber-reinforced materials and structural applications in civil engineering[J]. Composite Structures, 2019, 214: 246-263.
[11] 宫亚峰, 吴树正, 毕海鹏, 等. 玄武岩纤维活性粉末混凝土与钢绞线粘结滑移过程声学特性表征[J]. 吉林大学学报(工学版), 2023, 53(6): 1819-1832. GONG Yafeng, WU Shuzheng, BI Haipeng, et al. Acoustic characterization of bond-slip process between basalt fiber reactive powder concrete and steel strand[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1819-1832.
[12] SHAIKH F U A, TAWEEL M. Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures[J]. Advances in Concrete Construction, 2015, 3(4): 283-293.
[13] YEW M K, MAHMUD H B, SHAFIGH P, et al. Effects of polypropylene twisted bundle fibers on the mechanical properties of high-strength oil palm shell lightweight concrete[J]. Materials and Structures, 2016, 49(4): 1221-1233.
[14] FU Q, XU W R, BU M X, et al. Orthogonal experimental study on hybrid-fiber high-durability concrete for marine environment[J]. Journal of Materials Research and Technology, 2021, 13: 1790-1804.
[15] 李福海, 高浩, 唐慧琪, 等. 短切玄武岩纤维混凝土基本性能试验研究[J]. 铁道科学与工程学报, 2022, 19(2): 419-427. LI Fuhai, GAO Hao, TANG Huiqi, et al. Basic properties and shrinkage model of chopped basalt fiber concrete[J]. Journal of Railway Science and Engineering, 2022, 19(2): 419-427.
[16] 甘磊, 吴健, 沈振中, 等. 硫酸盐和干湿循环作用下玄武岩纤维混凝土劣化规律[J]. 土木工程学报, 2021, 54(11): 37-46. GAN Lei, WU Jian, SHEN Zhenzhong, et al. Deterioration law of basalt fiber reinforced concrete under sulfate attack and dry-wet cycle[J]. China Civil Engineering Journal, 2021, 54(11): 37-46.
[17] CHEN X F, KOU S C, XING F. Mechanical and durable properties of chopped basalt fiber reinforced recycled aggregate concrete and the mathematical modeling[J]. Construction and Building Materials, 2021, 298: 123901.
[18] 赵燕茹, 刘芳芳, 王磊, 等. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069. ZHAO Yanru, LIU Fangfang, WANG Lei, et al. Modeling of the compressive strength of basalt fiber concrete based on pore structure under single-side freeze-thaw condition[J]. Materials Reports, 2020, 34(12): 12064-12069.
[19] 董伟, 付前旺, 申向东, 等. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 69-74. DONG Wei, FU Qianwang, SHEN Xiangdong, et al. Grey entropy analysis on effect of pore structure on compressive strength of aeolian sand concrete after salt-freezing[J]. Materials Reports, 2023, 37(2): 69-74.
[20] 乔宏霞, 苏睿, 李琼, 等. 基于Wiener过程寿命预测的再生骨料混凝土耐久性能变化规律的研究[J]. 工业建筑, 2022, 52(6): 167-173. QIAO Hongxia, SU Rui, LI Qiong, et al. Research on variation law of durability of recycled aggregate concrete based on Wiener process life prediction[J]. Industrial Construction, 2022, 52(6): 167-173.
[21] 蔡忠义, 陈云翔, 张诤敏, 等. 非线性步进加速退化数据的可靠性评估方法[J]. 北京航空航天大学学报, 2016, 42(3): 576-582. CAI Zhongyi, CHEN Yunxiang, ZHANG Zhengmin, et al. Reliability assessment method of nonlinear step-stress accelerated degradation data[J]. Journal of Beijing University of Aeronautics and Astronautics,2016, 42(3): 576-582.
[22] 中国建筑科学研究院. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京:中国建筑工业出版社,2009.
[23] 薛维培, 刘晓媛, 姚直书, 等. 不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响[J]. 复合材料学报, 2020, 37(9): 2285-2293. XUE Weipei, LIU Xiaoyuan, YAO Zhishu, et al. Effects of different damage sources on pore structure changecharacteristics of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2285-2293.
[24] KHANDELWAL S, RHEE K Y. Recent advances in basalt-fiber-reinforced composites:tailoring the fiber-matrix interface[J]. Composites Part B: Engineering, 2020, 192: 108011.
[25] ZHOU M, HE X J, WANG H Y, et al. Experimental study of mechanism properties of interfacial transition zones in steel fiber reinforced concrete[J]. Case Studies in Construction Materials, 2024, 20: e02954.
[1] 董伟,朱相茹,王雪松,周梦虎. 氯盐干湿循环下风积沙混凝土微观结构演变[J]. 山东大学学报 (工学版), 2024, 54(4): 115-121.
[2] 董伟,周梦虎,王雪松,薛刚,王栋. 碳化-冻融作用对风积沙混凝土氯离子传输的影响[J]. 山东大学学报 (工学版), 2024, 54(1): 123-130.
[3] 刘澔. 钢渣粉基沥青混合料的性能评价与提升机理[J]. 山东大学学报 (工学版), 2023, 53(1): 32-38.
[4] 周福娜,高育林,王佳瑜,文成林. 基于深度学习的缓变故障早期诊断及寿命预测[J]. 山东大学学报(工学版), 2017, 47(5): 30-37.
[5] 冯啸1,张乐文1*,刘人太1,张崇高2,孙子正1,张伟杰1. 碱土加固注浆材料试验及其工程应用[J]. 山东大学学报(工学版), 2013, 43(6): 65-71.
[6] 王甲春1,张照华2,苏宁3. 混凝土渗透性的原位测试与评价[J]. 山东大学学报(工学版), 2013, 43(5): 74-79.
[7] 谭忠盛,黄成造 ,刘恒,朋改非 . 大跨公路隧道结构耐久性分析[J]. 山东大学学报(工学版), 2008, 38(3): 18-22 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新国1,许崇芳1*,王金双1,严纪丛1,韩廷武1,2. 无电感蔡氏电路设计方法与应用[J]. 山东大学学报(工学版), 2010, 40(6): 134 -138 .
[2] 陈文强1,林琛1,2,陈珂3,陈锦秀1,邹权1,2*. 基于GraphLab的分布式近邻传播聚类算法[J]. 山东大学学报(工学版), 2013, 43(5): 13 -18 .
[3] 周海龙,申向东,薛慧君. 小龄期水泥土无侧限抗压强度试验研究[J]. 山东大学学报(工学版), 2014, 44(1): 75 -79 .
[4] 赵建玉,贾磊,朱文兴,杨立才 . 干道交叉口交通信号的模糊控制设计[J]. 山东大学学报(工学版), 2006, 36(1): 46 -50 .
[5] 夏辉1,王华1,陈熙2. 一种基于微粒群思想的蚁群参数自适应优化算法[J]. 山东大学学报(工学版), 2010, 40(3): 26 -30 .
[6] 黄传真1,2,庄新强1,2,邹斌1,2,刘子夜1,2. 汽车覆盖件模具钢高速切削数据库的研究[J]. 山东大学学报(工学版), 2011, 41(5): 9 -12 .
[7] 陈冬岩. 基于多信道的MAC层协议在无线传感器网络中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 41 -49 .
[8] 黄添强1,2,陈智文1. 基于双向运动矢量的数字视频篡改鉴定[J]. 山东大学学报(工学版), 2011, 41(4): 13 -19 .
[9] 姚占勇,韩杰*,商庆森,葛智,张晓萌,崔衡. 碳纤维石墨导电沥青砂浆压敏性能研究[J]. 山东大学学报(工学版), 2013, 43(1): 80 -85 .
[10] 王 玮,朱维红,高振明,许 峰 . FMT系统的频率同步算法[J]. 山东大学学报(工学版), 2007, 37(2): 72 -75 .