您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (2): 114-124.doi: 10.6040/j.issn.1672-3961.0.2024.040

• 土木工程 • 上一篇    下一篇

基于CFD-DEM耦合的泥水平衡盾构排浆管卵石滞排研究

童里1,3,李达2*,李树忱1,彭科峰1,3,陈祎1,3   

  1. 1.山东大学齐鲁交通学院, 山东 济南 250002;2.中铁第四勘察设计院集团有限公司, 湖北 武汉 430063;3.山东大学岩土与地下工程研究院, 山东 济南 250061
  • 发布日期:2025-04-15
  • 作者简介:童里(1999— ),男,湖北恩施人,硕士研究生,主要研究方向为岩土工程. E-mail: tongli19990909@163.com. *通信作者简介:李达(1990— ),男,陕西宝鸡人,工程师,硕士,主要研究方向为隧道工程设计. E-mail: lida_csu@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51879150,41831278);济南市“高校20条”资助项目(2020GXRC046)

Research on pebble slagging stagnation of slurry balance shield drain pipe based on CFD-DEM coupling

TONG Li1,3, LI Da2*, LI Shuchen1, PENG Kefeng1,3, CHEN Yi1,3   

  1. 1. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China;
    2. China Railway Fourth Survey and Design Institute Group Co., Ltd., Wuhan 430063, Hubei, China;
    3. Institute of Geotechnical and Underground Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2025-04-15

摘要: 针对泥水盾构的弯曲管路进行三维建模,利用CFD-DEM耦合进行数值模拟,揭示泥浆携带卵石的运移规律,分析卵石沉积滞排的原因,探究卵石沉积对管道内流场的影响,为现场施工解决滞排问题提供优化指导。结果表明:滞排问题是由于低流速的泥浆提供的拖曳力太低,大量颗粒在管道弯曲处发生了沉积。管道内颗粒进入速度和排出速度将会达到动态平衡,管道弯曲度数越大,颗粒生成速度和排出速度达到动态平衡的临界点越晚,说明颗粒滞排越严重,滞排颗粒数量就越多。颗粒沉积导致有效过流面积变小,泥浆流速发生了明显分层,流场的分层更加不利于底部沉积颗粒的运移,加剧滞排问题。泥浆黏度越大,颗粒和泥浆发生剪切流动时的拖曳力越大,颗粒的平均运移速度越大。泥浆密度对颗粒的水平运移影响不大,但颗粒向上运输时,密度大的泥浆能够提供更高的浮力,有利于防治颗粒的滞排。

关键词: 泥水盾构, 滞排, CFD-DEM, 卵石运移

Abstract: Three-dimensional modeling was carried out for the curved pipeline of slurry balance shield, and numerical simulation was carried out using CFD-DEM coupling to reveal the migration law of pebbles carried by slurry, analyze the causes of the slagging stagnation of pebbles, explore the influence of pebble deposition on the flow field in the pipeline, and provide optimization guidance for the solution of the delayed drainage problem in field construction. The results showed that the problem of slagging stagnation was due to the low drag force provided by the low flow rate slurry, and a large number of particles were deposited at the bend of the pipeline. The larger the curved pipe was, the later the critical pointed at which the particle formation velocity and slagging velocity reached the dynamic equilibrium, indicating that the more the number of deposit particles. Particle deposition made the effective flow area smaller, the slurry flow rate was obviously stratified, and the stratification of flow field was more unfavorable to the migration of sediment particles at the bottom, which aggravated the problem of hysteresis. The larger the viscosity of the slurry, the greater the drag force of the particles between slurry, and the larger the average migration velocity of the particles. Slurry density had little effect on the horizontal movement of particles, but when particles were transported upward, slurry density could provide higher buoyancy, which was conducive to preventing the stagnation of particles.

Key words: slurry balance shield, slagging stagnation, CFD-DEM, pebble transport

中图分类号: 

  • TU94
[1] 竺维彬, 钟长平, 黄威然, 等. 盾构施工“滞排”成因分析和对策研究[J]. 现代隧道技术, 2014,51(5):23-32. ZHU Weibin, ZHONG Changping, HUANG Weiran, et al. Cause analysis and countermeasures for“hindered” mucking in shield construction[J]. Modern Tunnelling Technology, 2014, 51(5):23-32.
[2] 陈慧超.大直径常压刀盘泥水平衡盾构掘进防滞排技术[J]. 施工技术(中英文), 2023, 52(3):132-139. CHEN Huichao. Anti-stagnation and drainage technology of mud-water balance shield tunneling with large diameter atmospheric pressure cutter head[J]. Construction Technology, 2023, 52(3):132-139.
[3] 贾连辉, 肖艳秋, 赵驰, 等.基于CFD-DEM方法的泥水盾构环流系统泥浆携渣特性研究[J].机械设计, 2023,40(12):126-132. JIA Lianhui, XIAO Yanqiu, ZHAO Chi, et al. Study on mud-water shield circulation system's slurry slag-carrying characteristics based on CFD-DEM method[J]. Journal of Machine Design, 2023, 40(12):126-132.
[4] 陈健, 薛峰, 赵合全, 等. 大直径泥水盾构环流系统管路压力损失及携渣特性[J]. 隧道与地下工程灾害防治, 2020, 2(2):83-91. CHEN Jian, XUE Feng, ZHAO Hequan, et al. Pressure loss and slag carrying characteristics of large diameter mud shield circulation system[J].Tunnel and Underground Engineering Disaster Control, 2019, 2(2):83-91.
[5] XIONG H, WU H, BAO X H, et al. Investigating effect of particle shape on suffusion by CFD-DEM modeling[J]. Construction and Building Materials, 2021, 289:123043.
[6] GUO Y D, LI X G, JIN D L, et al. Assessment on the reverse circulation performance of slurry shield pipeline system assisted with CFD-DEM modeling under sandy cobble stratum[J]. Powder Technology, 2023, 425:118573.
[7] WANG J A, LI Y, ZHAO J F, et al. Simulation of the effect of hydrate adhesion properties on flow safety in solid fluidization exploitation[J]. Petroleum, 2023, 9(3):403-411.
[8] GUO Y D, LI X G, SUN Y, et al. Investigation into the flow characteristics of slurry shield pipeline system under sandy pebble stratum:model test and CFD-DEM simulation[J]. Powder Technology, 2023, 415:118149.
[9] LIU M B, LIAO S M, SHI Z H, et al. Analytical study and field investigation on the effects of clogging in slurry shield tunneling[J].Tunnelling and Underground Space Technology, 2023, 133:104957.
[10] YANG D, XIA Y M, WU D, et al. Numerical investigation of pipeline transport characteristics of slurry shield under gravel stratum[J].Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2018, 71:223-230.
[11] 任振, 贾连辉, 王少萍, 等. 卵石地层泥水盾构环流管道排渣特性研究[J]. 隧道建设(中英文), 2023,43(增刊1):171-177. REN Zhen, JIA Lianhui, WANG Shaoping, et al. Study on slag discharge characteristics of slurry shield circulating pipeline in pebble stratum[J].Tunnel Construction, 2023, 43(Suppl.1):171-177.
[12] CUI J, FANG Y, XU G Y, et al. Transportation performance of large-sized pebbles in slurry circulation system: a laboratory study[J]. Arabian Journal for Science and Engineering, 2021, 46(11):10519-10539.
[13] BINGHAM E C. An investigation of the laws of plastic flow[J]. Bulletin of the Bureau of Standards, 1916, 13(2):309.
[14] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1990:269-289.
[15] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47-65.
[16] ERGUN S. Fluid flow through packed columns[J]. Engineering Chemistry Materials Science, 1952, 48:89-94.
[17] 谢永辉. 砂卵石力学参数确定方法研究[D]. 成都:西南石油大学, 2017, 29(1):23-65. XIE Yonghui. Study on determination method of mechanical parameters of sandy pebble[D].Chengdu: Southwest Petroleum University, 2017, 29(1):23-65.
[18] ALOBAID F, BARAKI N, EPPLE B. Investigation into improving the efficiency and accuracy of CFD/DEM simulations[J]. Particuology, 2014, 16:41-53.
[19] TSUJI Y, KAWAGUCHI T, TANAKA T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1):79-87.
[1] 孙腾云,丁万涛,王承震,于文端,王志成,郭文静. 泥水盾构隧道用新型环保泥浆及流变性质[J]. 山东大学学报 (工学版), 2024, 54(6): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邓斌,王江 . 基于混沌同步与自适应控制的神经元模型参数估计[J]. 山东大学学报(工学版), 2007, 37(5): 19 -23 .
[2] 王进野,姚瑞英,张纪良,王其军 . 一类模糊双曲正切模型稳定性控制[J]. 山东大学学报(工学版), 2007, 37(2): 63 -66 .
[3] 夏 斌,张连俊 . DS-CDMA UWB系统中基于能量比较的TOA估计算法[J]. 山东大学学报(工学版), 2007, 37(1): 70 -73 .
[4] 员冬玲,邓建新,丁泽良,段振兴 . 梯度陶瓷水煤浆喷嘴的残余热应力有限元分析[J]. 山东大学学报(工学版), 2008, 38(2): 18 -22 .
[5] 毕侠飞,孙同景,杨福刚,张巍 . 非接触式并行连铸方坯在线定尺切割系统研究[J]. 山东大学学报(工学版), 2008, 38(1): 52 -55 .
[6] 杜烨,汤红卫,王卫东 . 边界奇异权法在复合型裂纹计算中的应用[J]. 山东大学学报(工学版), 2008, 38(3): 123 -126 .
[7] 王汝贵,蔡敢为 . 两自由度可控平面连杆机构机电耦合系统的超谐波共振分析[J]. 山东大学学报(工学版), 2008, 38(3): 58 -63 .
[8] 刘飞宏,王建明*,余丰,张刚. 基于SPH耦合有限元法的喷丸残余应力场数值模拟[J]. 山东大学学报(工学版), 2010, 40(6): 67 -71 .
[9] 刘晓平 王洪运 张鹏 秦绪平 张孟力. 三元共聚阳离子聚丙烯酰胺的合成及性能评价[J]. 山东大学学报(工学版), 2009, 39(3): 71 -76 .
[10] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .