您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (3): 103-114.doi: 10.6040/j.issn.1672-3961.0.2023.178

• 土木工程 • 上一篇    

异形钢管混凝土轴压短柱力学性能

罗靓1,2,晏宇翔1,2,吕辉1,2*,张成明1,2   

  1. 1.南昌航空大学土木建筑学院, 江西 南昌 330063;2.江西省装配式建筑与智能建造重点实验室, 江西 南昌 330063
  • 发布日期:2024-06-28
  • 作者简介:罗靓(1984— ),男,江西吉安人,讲师,硕士生导师,博士,主要研究方向为钢-混凝土组合结构. E-mail:luoliang@nchu.edu.cn. *通信作者简介:吕辉(1982— ),男,江西上饶人,副教授,硕士生导师,博士,主要研究方向为装配式建筑. E-mail:lvhui@nchu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52268031);江西省住建厅2023年科技项目(钢管混凝土组合结构设计方法及工程应用);南昌航空大学博士启动基金资助项目(EA201911291)

Mechanical behavior of special-shaped CFT stub column under axial compression

LUO Liang1,2, YAN Yuxiang1,2, LÜ Hui1,2*, ZHANG Chengming1,2   

  1. 1. College of Civil Engineering and Architecture, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China;
    2. Jiangxi Provincial Key Laboratory of Prefabricated Building and Intelligent Construction, Nanchang 330063, Jiangxi, China
  • Published:2024-06-28

摘要: 基于已有混凝土三轴塑性-损伤本构模型和钢材弹塑性本构模型,建立L形、T形、十字形3种异形钢管混凝土轴压短柱的三维实体精细有限元模型。在已有试验验证的基础上开展参数分析,对比钢管强度、混凝土强度、腹板高厚比和钢管壁厚对荷载-位移曲线的影响。结果表明:当钢管屈服强度或钢管壁厚增大时,柱的极限承载力明显增大,延性更好;当混凝土强度等级或腹板高厚比增大时,柱的极限承载力增大,但延性变差。确定了3种短柱达到极限承载力时的约束区与非约束区面积及其对应的混凝土Mises平均应力,提出考虑约束系数的承载力实用计算公式,此约束系数主要与腹板高厚比有关。将此公式计算得到极限承载力与试验值、有限元值对比,证明了公式的精确性和有效性,可用于3种异形钢管混凝土轴压短柱的承载力计算。

关键词: 异形钢管混凝土柱, 力学性能, 有限元分析, 极限承载力, 约束系数

中图分类号: 

  • TU398
[1] 朱彦奇, 黄宏, 陈梦成, 等. L形加肋钢管混凝土短柱轴压力学性能研究[J]. 铁道学报, 2020, 42(4): 107-114. ZHU Yanqi, HUANG Hong, CHEN Mengcheng, et al. Behavior of concrete filled L-shaped stiffened steel tubular stub columns under axial compression[J]. Journal of the China Railway Society, 2020, 42(4): 107-114.
[2] 蔡健, 孙刚. 轴压下带约束拉杆 L形钢管混凝土短柱的试验研究[J]. 土木工程学报, 2008, 41(9): 14-20. CAI Jian, SUN Gang. Experimental investigation on L-shaped concrete-filled steel tube stub columns with binding bars under axial load[J]. China Civil Engineering Journal, 2008, 41(9): 14-20.
[3] 林震宇, 沈祖炎, 罗金辉, 等. L形钢管混凝土轴压短柱力学性能研究[J]. 建筑钢结构进展, 2009, 11(6): 14-19. LIN Zhenyu, SHEN Zuyan, LUO Jinhui, et al. Study on behavior of l-shaped concrete-filled steel tube stubs subjected to axial-compression[J]. Progress in Steel Building Structures, 2009, 11(6): 14-19.
[4] 陈雨, 沈祖炎, 雷敏, 等. T形钢管混凝土短柱轴压试验[J]. 同济大学学报(自然科学版), 2016, 44(6): 822-829. CHEN Yu, SHEN Zuyan, LEI Min, et al. Experimental investigation on concrete-filled T-shaped steel tube stubs subjected to axial compression[J]. Journal of the Tongji University(Natural Science), 2016, 44(6): 822-829.
[5] 赵毅, 静行. T形钢管混凝土短柱轴压性能研究[J]. 武汉理工大学学报, 2011, 33(9): 87-90. ZHAO Yi, JING Hang. Experimental study of T-shaped concrete-filled steel tube columns under axial compression loading[J]. Journal of the Wuhan University of Technology, 2011, 33(9): 87-90.
[6] 黄宏, 查宝军, 杨超, 等. 加肋T形钢管混凝土短柱力学性能研究[J]. 建筑结构学报, 2018, 39(5): 132-137. HUANG Hong, ZHA Baojun, YANG Chao, et al. Mechanical behavior of T-shaped concrete-filled steel ribbed tubular short columns[J]. Journal of the Building Structures, 2018, 39(5): 132-137.
[7] 左志亮, 蔡健, 钱泉, 等. 带约束拉杆T形钢管混凝土短柱轴压性能的试验研究[J]. 土木工程学报, 2011, 44(11): 43-51. ZUO Zhiliang, CAI Jian, QIAN Quan, et al. Experimental study on T-shaped CFT stub columns with binding bars subjected to axial compression[J]. China Civil Engineering Journal, 2011, 44(11): 43-51.
[8] 刘林林, 屠永清. 两种钢管混凝土T形柱的轴压性能[J]. 混凝土, 2011(9): 25-28. LIU Linlin, TU Yongqing. Properties of two kinds of T-shaped concrete- filled steel tubular columns under axial load[J]. Concrete, 2011(9): 25-28.
[9] YANG Yuanlong, WANG Yuyin, FU Feng, et al. Static behavior of T-shaped concrete-filled steel tubular columns subjected to concentric and eccentric compressive loads[J]. Thin-Walled Structures, 2015, 95: 374-388.
[10] LIU Xianggang, XU Chuangze, LIU Jiepeng, et al. Research on special-shaped concrete-filled steel tubular columns under axial compression[J]. Journal of Constructional Steel Research, 2018, 147: 203-223.
[11] 赵小芹, 左志亮, 蔡健. 带约束拉杆十字形钢管混凝土短柱轴压试验研究[J]. 建筑钢结构进展, 2022, 24(7): 38-48. ZHAO Xiaoqin, ZUO Zhiliang, CAI Jian. Experimental study on the cross-shaped CFST stub column with binding bars subjected to axial compression[J]. Progress in Steel Building Structures, 2022, 24(7): 38-48.
[12] DING Faxing, LUO Liang, ZHU Jiang, et al. Mechanical behavior of stirrup-confined rectangular CFT stub columns under axial compression[J]. Thin-Walled Structures, 2018, 124(3): 136-150.
[13] DING Faxing, YING Xiaoyong, ZHOU Linchao, et al. Unified calculation method and its application in determining the uniaxial mechanical properties of concrete[J]. Frontiers of Architecture and Civil Engineering in China, 2011, 5(3): 381-393.
[14] DING Faxing, LU Deren, BAI Yu, et al. Comparative study of square stirrup-confined concrete-filled steel tubular stub columns under axial loading[J]. Thin-Walled Structures, 2016, 98(1): 443-453.
[15] DING Faxing, FU Lei, LIU Xuemei, et al. Mechanical performance of track-shaped rebar stiffened concrete-filled steel tubular(SCFRT)stub columns under axial loading[J]. Thin-Walled Structures, 2016, 99(2): 168-181.
[16] HAN Linhai, YAO Guohan, ZHAO Xiaolin. Tests and calculations for hollow structural steel(HSS)stub columns filled with self-consolidating concrete(SCC)[J]. Journal of Constructional Steel Research, 2005, 61(9): 1241-1269.
[17] 中国工程建设标准化协会. 矩形钢管混凝土结构技术规程: CECS159—2004[S]. 北京:中国计划出版社, 2004.
[18] ACI Committee 318. Building code requirements for reinforced concrete and commentary: ACI 318-14[S]. Detroit: American Concrete Institute, 2014.
[19] Japan Steel Construction Committee. Recommendations for design and construction of concrete filled steel tubular structures: AIJ-CFT[S]. Tokyo: Architectural Institute of Japan, 2008.
[20] Technical Committee B/525, Building and civil engineering structures. Steel, concrete and composite bridges-part 5: code of practice for design of composite bridges: BS 5400-5[S]. London: British Standards Institution, 2005.
[21] Technical Committee B/525, Building and Civil Engineering Structures. Eurocode 4: design of composite steel and concrete structures-part 1-1: general rules and rules for buildings: BS EN 1994-1-1[S]. London: British Standards Institution, 2004.
[1] 扈萍,李萌,滕越,马少坤, 张西文. 考虑主应力偏转影响的基坑开挖应力路径[J]. 山东大学学报 (工学版), 2023, 53(6): 100-107.
[2] 江健宏,舒晓锐,刘志鲲,孙杰,荆树举,张宏博. 废旧轮胎碎片(TDA)复合填料中竖向锚定板承载特性[J]. 山东大学学报 (工学版), 2023, 53(6): 92-99.
[3] 潘旭东,李鸿钊,郭焱旭,刘人太,何万里. 海洋环境下注浆加固体的力学性能演化[J]. 山东大学学报 (工学版), 2023, 53(5): 112-120.
[4] 王晓明,朱传超,许航,贺耀北,韩昭,李兆辉,黄春杨. 无内腹板式钢索塔锚固区的力学性能分析[J]. 山东大学学报 (工学版), 2023, 53(3): 50-59.
[5] 孙杰,张宏博,程钰,刘羽,张洪波,刘志鲲. 基于TDA填料的废旧轮胎条带加筋砂土边坡承载特性[J]. 山东大学学报 (工学版), 2023, 53(1): 49-59.
[6] 赵之仲,柳泓哲,唐亮,杨振宇,王日升. 强化方式与材料对再生粗集料的性能规律分析[J]. 山东大学学报 (工学版), 2023, 53(1): 11-17.
[7] 周勇,李召峰,左志武,王川,林春金,张新,姚望. 滨海岩溶注浆充填体性能研究[J]. 山东大学学报 (工学版), 2022, 52(1): 103-110.
[8] 韩家桢,王勇,谢玉东,王启先,张新标,高文彬,李荣兰,张传军. 深海带电插拔连接器力学特性分析[J]. 山东大学学报 (工学版), 2020, 50(6): 30-39.
[9] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81-85.
[10] 杨炎,王威强,潘路,宋明大. 服役后16Mn管材应变时效的自动球压痕测试[J]. 山东大学学报(工学版), 2017, 47(4): 64-69.
[11] 苏成功,刘燕,王威强, 王玉花. 压痕对不锈钢材料表面残余应力的影响[J]. 山东大学学报(工学版), 2017, 47(1): 90-96.
[12] 李明,朱召泉,刘琳. 混凝土压缩试验的改善及动态损伤[J]. 山东大学学报(工学版), 2017, 47(1): 68-75.
[13] 祁金胜,安春国,柏洁, 王湛. 圆形烟风道支座与加固肋匹配特性[J]. 山东大学学报(工学版), 2017, 47(1): 125-130.
[14] 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119.
[15] 张万志,刘华,张峰,高磊,姚晨,刘冠之. 斜拉桥塔梁同步施工过程的力学特性[J]. 山东大学学报(工学版), 2016, 46(6): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!