山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (4): 8-16.doi: 10.6040/j.issn.1672-3961.0.2020.482
• • 上一篇
丁飞,江铭炎*
DING Fei, JIANG Mingyan*
摘要: 将狮群算法(lion swarm optimization, LSO)与海鸥算法的迁徙机制和螺旋搜索机制结合,增强算法的局部搜索能力;同时增加监督机制,提高算法的全局搜索能力。与粒子群算法和狮群算法对比,在常用的测试函数上验证改进狮群算法的优越性。采用改进后的狮群算法优化BP神经网络模型,对房屋价格预测问题进行研究,通过房屋的户型、面积等相关指标有效地对青岛市的二手房价格进行预测。改进后的狮群算法对BP神经网络的权值和偏置进行优化,提高BP神经网络的收敛速度和训练精度。试验结果表明,提出的螺旋搜索狮群和BP结合算法(spiral search lion swarm optimization-BP, SLSO-BP)模型在房价预测问题上预测效果更好。
中图分类号:
[1] EREN M, CELIK A K, HUSEYNI I. A genetic algorithm-based multivariate grey model in housing demand forecast in turkey[M]. Intelligent Techniques for Data Analysis in Diverse Settings, 2016: 476-500. [2] DENISKO D,HOFFMAN M M. Classification and interaction in random forests[J]. Proceedings of the National Academy of Sciences, 2018, 115(8): 1690-1692. [3] 周学君, 陈文秀. 基于人工神经网络BP算法的黄冈市房价预测[J]. 黄冈师范学院学报, 2014, 34(3): 13-15. ZHOU Xuejun, CHEN Wenxiu. Prediction of housing prices in huanggang city based on artificial neural network bp algorithm[J]. Journal of Huanggang Normal University, 2014, 34(3): 13-15. [4] 王筱欣,高攀. 基于BP神经网络的重庆市房价验证与预测[J]. 重庆理工大学学报(社会科学), 2016, 30(9): 49-53. WANG Xiaoxin, GAO Pan. On the verification and forecast of Chongqing house price based on BP neural network[J]. Journal of Chongqing University of Technology(Social Science), 2016, 30(9): 49-53. [5] 杭晓亚, 柳叙丰, 赵泽昆. 基于GA-BP神经网络的青岛房价预测[J]. 四川建筑, 2015, 35(6): 233-236. HANG Xiaoya, LIU Xufeng, ZHAO Zekun. On the prediction of commercial housing price based on GA-BP neural network model[J]. Sichuan Architecture, 2015, 35(6): 233-236. [6] 李春生,李霄野,张可佳. 基于遗传算法改进的BP神经网络房价预测分析[J]. 计算机技术与发展, 2018, 28(8): 144-147. LI Chunsheng, LI Xiaoye, ZHANG Kejia. Price forecasting analysis of BP neural network based on improved genetic algorithm[J]. Computer Technology and Devel-opment, 2018, 28(8): 144-147. [7] 高文. 基于遗传算法优化的BP神经网络对房价预测的研究[D]. 延安:延安大学, 2019. GAO Wen. Study on house price predict based on bp neural network by genetic algorithm[D]. Yan'an: Yan'an University, 2019. [8] 张卉. 基于粒子群优化BP神经网络的房价预测[J]. 价值工程, 2012, 31(14): 207-209. ZHANG Hui. BP network model based on PSO for house price forecasting[J]. Value Engineering, 2012, 31(14): 207-209. [9] 唐晓彬, 张瑞, 刘立新. 基于蝙蝠算法SVR模型的北京市二手房价预测研究[J]. 统计研究, 2018, 35(11): 71-81. TANG Xiaobin, ZHANG Rui, LIU Lixin. Research on forecast of second-hand house price in Beijing based on SVR model of bat algorithm[J]. Statistical Research, 2018, 35(11): 71-81. [10] 吴雨. 基于模拟退火算法的改进极限学习机[J]. 计算机系统应用, 2020, 29(2): 163-168. WU Yu. Improved extreme learning machine based on simulated annealing algorithm[J]. Computer System Application, 2020, 29(2): 163-168. [11] 乔维德. 基于BP神经网络模型的商品房价格预测研究[J]. 常州工程职业技术学院高职研究, 2020(1): 35-42. QIAO Weide. On the prediction of commercial housing price based on BP neural network model[J]. Higher Vocational Studies of Changzhou Vocational Institute of Engineering, 2020(1): 35-42. [12] 刘生建, 杨艳, 周永权. 一种群体智能算法-狮群算法[J]. 模式识别与人工智能, 2018, 31(5): 431-441. LIU Shengjian, YANG Yan, ZHOU Yongquan. A swarm intelligence algorithm:lion swarm optimization[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(5): 431-441. [13] KENNEDY J, EBERHART R C. Particle swarmoptimization[C] //Proceeding of the IEEE International Conference on Neural Networks. Washington, USA: IEEE, 1995: 1942-1948. [14] EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C] //Proceeding of the 6th International Symposium on Micro Machine and Human Science. Washington, USA: IEEE, 1995: 39-43. [15] 江铭炎, 袁东风. 人工蜂群算法及其应用[M]. 北京: 科学出版社, 2014. [16] 江铭炎, 袁东风. 人工鱼群算法及其应用[M]. 北京: 科学出版社, 2012. [17] RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: a gravitational search algorithm[J]. Information Science, 2009, 179(13): 2232-2248. [18] DHIMAN G, KUMAR V. Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems, 2019, 165: 169-196. [19] PRICE K V, AWAD N H, ALI M Z, SUGANTHAN P N. Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization[R]. Singapore: Nanyang Technological University of Singapore, 2018. [20] 阎平凡,张长水. 人工神经网络与模拟进化计算[M]. 北京: 清华大学出版社, 2000. |
[1] | 孙东磊,王艳,于一潇,韩学山,杨明,闫芳晴. 基于BP神经网络的短期光伏集群功率区间预测[J]. 山东大学学报 (工学版), 2020, 50(5): 70-76. |
[2] | 金保明,卢光毅,王伟,杜伦阅. 基于弹性梯度下降算法的BP神经网络降雨径流预报模型[J]. 山东大学学报 (工学版), 2020, 50(3): 117-124. |
[3] | 郑店坤,许同乐,尹召杰,孟庆民. 改进PSO-BP神经网络对尾矿坝地下水位的预测方法[J]. 山东大学学报 (工学版), 2019, 49(3): 108-113. |
[4] | 杨亚楠,夏斌,谢楠,袁文浩. 基于BP神经网络和多元Taylor级数的混合定位算法[J]. 山东大学学报 (工学版), 2019, 49(1): 36-40. |
[5] | 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83. |
[6] | 姚福安,庞向坤,焦营营,王忠林,张锡满 . 基于三色法和BP神经网络的回转窑温度检测[J]. 山东大学学报(工学版), 2008, 38(2): 61-65 . |
[7] | 高小伟,蒋晓芸 . BP神经网络在入侵检测系统中的应用及优化[J]. 山东大学学报(工学版), 2006, 36(6): 107-110 . |
|