山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (3): 117-124.doi: 10.6040/j.issn.1672-3961.0.2019.504
Baoming JIN(),Guangyi LU,Wei WANG,Lunyue DU
摘要:
运用反向传播(back propagation, BP)的改进算法弹性梯度下降算法,选择崇阳溪上游流域1997—2014年的14场降雨径流过程,以流域内洋庄、吴边、大安、坑口、岭阳、岚谷6个雨量站的实测降雨量和武夷山水文站的前期流量资料为输入,武夷山水文站相应流量为输出,建立弹性梯度下降算法的BP神经网络降雨径流预报模型,采用7场降雨径流过程对模型进行检验。结果表明,与传统的反向传播算法相比,该模型所需的参数较少,运算速度显著提高,模型的预报精度满足要求,可以为防汛部门预测洪水提供依据。
中图分类号:
1 | 张建云. 中国水文预报技术发展的回顾与思考[J]. 水科学进展, 2010, 21 (4): 435- 443. |
ZHANG Jianyun . Review and reflection on China's hydrological forecasting techniques[J]. Advances in Water Science, 2010, 21 (4): 435- 443. | |
2 | 包红军, 王莉莉, 李致家, 等. 基于Holtan产流的分布式水文模型[J]. 河海大学学报(自然科学版), 2016, 44 (4): 340- 346. |
BAO Hongjun , WANG Lili , LI Zhijia , et al. A distributed hydrological model based on Holtan runoff generation theory[J]. Journal of Hohai University(Natural Sciences), 2016, 44 (4): 340- 346. | |
3 |
何昳颖, 陈晓宏, 张云, 等. BP人工神经网络在小流域径流模拟中的应用[J]. 水文, 2015, (5): 35- 40.
doi: 10.3969/j.issn.1000-0852.2015.05.007 |
HE Yiying , CHEN Xiaohong , ZHANG Yun , et al. Application of BP neural network model in runoff simulating for small watershed[J]. Journal of China Hydrology, 2015, (5): 35- 40.
doi: 10.3969/j.issn.1000-0852.2015.05.007 |
|
4 |
王胜刚, 张莹, 徐应涛, 等. 基于打洞函数法的BP神经网络水文预报方法[J]. 运筹学学报, 2011, 15 (4): 45- 54.
doi: 10.3969/j.issn.1007-6093.2011.04.005 |
WANG Shenggang , ZHANG Ying , XU Yingtao , et al. The BP neural network hydrological forecasting algorithm based on tunneling function method[J]. Operations Research Transactions, 2011, 15 (4): 45- 54.
doi: 10.3969/j.issn.1007-6093.2011.04.005 |
|
5 |
NOURANI V . An emotional ANN (EANN) approach to modeling rainfall-runoff process[J]. Journal of Hydrology, 2017, 544, 267- 277.
doi: 10.1016/j.jhydrol.2016.11.033 |
6 |
杜拉, 纪昌明, 李荣波, 等. 基于小波-BP神经网络的贝叶斯概率组合预测模型及其应用[J]. 中国农村水利水电, 2015, (7): 50- 53.
doi: 10.3969/j.issn.1007-2284.2015.07.012 |
DU La , JI Changming , LI Rongbo , et al. Wavelet-BP neural network Bayesian probabilistic combination forecasting model and its application[J]. China Rural Water and Hydropower, 2015, (7): 50- 53.
doi: 10.3969/j.issn.1007-2284.2015.07.012 |
|
7 | SEDKIA A , MAZOUDI E E . Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting[J]. Expert Systems with Applications, 2009, (36): 4523- 4527. |
8 | WANG Jianjin , PENG Shi . Application of BP neural network algorithm in tradition hydrological model for flood forecasting[J]. Water, 2017, 9 (1): 1- 16. |
9 | INAN C A , CANOGLU M C , KURTULUS B . A new artificial neural network model for the prediction of the rainfall-runoff relationship for La Chartreux Spring, France[J]. Fresenius Environmental Bulletin, 2018, 27 (11): 7354- 7363. |
10 | 马江琦.基于奇异值分解和特征融合的人脸识别[D].济南:山东大学, 2016. |
MA Jiangqi. Face recognition algorithm based on singular value decomposition and feature fusion[D]. Jinan: Shandong University, 2016. | |
11 | ZHANG R , LEE E . Human face recognition used improved back-propagation (BP) neural network[J]. Journal of Korea Multimedia Society, 2018, 21 (4): 471- 477. |
12 |
NARESH BABU , EDLA DAMODAR-REDDY . New algebraic activation function for multi-layered feed forward neural networks[J]. IETE Journal of Research, 2017, 63 (1): 71- 79.
doi: 10.1080/03772063.2016.1240633 |
13 | 邢茂琳, 周新志. 都江堰来水预测中BP网络训练方法的研究[J]. 微计算机信息, 2009, (34): 149- 150. |
XING Maolin , ZHOU Xinzhi . Study of BP training method based on Dujiangyan water prediction[J]. Microcomputer Information, 2009, (34): 149- 150. | |
14 | 熊海晶.基于神经网络和小波分析的降水预报研究[D].南京:南京大学, 2012. |
XIONG Haijing. Study on the precipitation forecast based on neural network and wavelet analysis[D]. Nanjing: Nanjing University, 2012. | |
15 | RIEDMILLER M , BRAUN H . A direct adaptive method for faster back propagation learning: the RPROP algorithm[J]. International Conference on Neural Networks, San Francisco, USA: IEEI, 1993, 1, 586- 591. |
16 | 袁曾任. 人工神经元网络及其应用[M]. 北京: 清华大学出版社, 1999. |
17 | 赵振宇, 徐用懋. 模糊理论和神经网络的基础与应用[M]. 南宁: 广西科学技术出版社, 1996. |
18 | 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.水文情报预报规范: GB/T 22482—2008[S].北京:中国标准出版社, 2008. |
[1] | 郑店坤,许同乐,尹召杰,孟庆民. 改进PSO-BP神经网络对尾矿坝地下水位的预测方法[J]. 山东大学学报 (工学版), 2019, 49(3): 108-113. |
[2] | 杨亚楠,夏斌,谢楠,袁文浩. 基于BP神经网络和多元Taylor级数的混合定位算法[J]. 山东大学学报 (工学版), 2019, 49(1): 36-40. |
[3] | 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83. |
[4] | 姚福安,庞向坤,焦营营,王忠林,张锡满 . 基于三色法和BP神经网络的回转窑温度检测[J]. 山东大学学报(工学版), 2008, 38(2): 61-65 . |
[5] | 高小伟,蒋晓芸 . BP神经网络在入侵检测系统中的应用及优化[J]. 山东大学学报(工学版), 2006, 36(6): 107-110 . |
|