您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (4): 8-16.doi: 10.6040/j.issn.1672-3961.0.2020.482

• • 上一篇    

基于改进狮群算法和BP神经网络模型的房价预测

丁飞,江铭炎*   

  1. 山东大学信息科学与工程学院, 山东 青岛 266237
  • 发布日期:2021-08-18
  • 作者简介:丁飞(1997— ),女,辽宁大连人,硕士研究生,主要研究方向为群智能优化算法及其应用. E-mail:15898143460@163.com. *通信作者简介:江铭炎(1964— ),男,山东济南人,教授,博士生导师,主要研究方向为群智能优化算法及其应用. E-mail:jiangmingyan@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61771293);山东省自然科学基金资助项目(ZR2020MF153);山东省重点资助项目(2019JZZY010111)

Housing price prediction based on improved lion swarm algorithm and BP neural network model

DING Fei, JIANG Mingyan*   

  1. School of Information Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
  • Published:2021-08-18

摘要: 将狮群算法(lion swarm optimization, LSO)与海鸥算法的迁徙机制和螺旋搜索机制结合,增强算法的局部搜索能力;同时增加监督机制,提高算法的全局搜索能力。与粒子群算法和狮群算法对比,在常用的测试函数上验证改进狮群算法的优越性。采用改进后的狮群算法优化BP神经网络模型,对房屋价格预测问题进行研究,通过房屋的户型、面积等相关指标有效地对青岛市的二手房价格进行预测。改进后的狮群算法对BP神经网络的权值和偏置进行优化,提高BP神经网络的收敛速度和训练精度。试验结果表明,提出的螺旋搜索狮群和BP结合算法(spiral search lion swarm optimization-BP, SLSO-BP)模型在房价预测问题上预测效果更好。

关键词: 狮群算法, 螺旋搜索, 监督机制, BP神经网络, 房价预测

Abstract: The lion swarm optimization algorithm combined the migration mechanism and spiral search mechanism of seagull algorithm to enhance the local search ability; the global search performance of lion swarm optimization algorithm was enhanced by adding supervision mechanism. The particle swarm optimization algorithm and the lion swarm optimization algorithm were used as the comparison algorithm, and the advantages of the improved algorithm were verified on the common test functions. The improved lion swarm optimization algorithm was used to optimize the BP neural network model to study the problem of housing price prediction, and the price of second-hand housing in Qingdao could be effectively predicted through relevant indicators such as house type and area. The improved lion swarm optimization algorithm was used to optimize the weights and biases of the BP neural network to improve the convergence speed and training accuracy of the BP neural network. The test results showed that the SLSO-BP model proposed in the study had a better prediction effect on the problem of housing price prediction.

Key words: lion swarm algorithm, spiral search, supervision mechanism, BP neural network, housing price prediction

中图分类号: 

  • TP183
[1] EREN M, CELIK A K, HUSEYNI I. A genetic algorithm-based multivariate grey model in housing demand forecast in turkey[M]. Intelligent Techniques for Data Analysis in Diverse Settings, 2016: 476-500.
[2] DENISKO D,HOFFMAN M M. Classification and interaction in random forests[J]. Proceedings of the National Academy of Sciences, 2018, 115(8): 1690-1692.
[3] 周学君, 陈文秀. 基于人工神经网络BP算法的黄冈市房价预测[J]. 黄冈师范学院学报, 2014, 34(3): 13-15. ZHOU Xuejun, CHEN Wenxiu. Prediction of housing prices in huanggang city based on artificial neural network bp algorithm[J]. Journal of Huanggang Normal University, 2014, 34(3): 13-15.
[4] 王筱欣,高攀. 基于BP神经网络的重庆市房价验证与预测[J]. 重庆理工大学学报(社会科学), 2016, 30(9): 49-53. WANG Xiaoxin, GAO Pan. On the verification and forecast of Chongqing house price based on BP neural network[J]. Journal of Chongqing University of Technology(Social Science), 2016, 30(9): 49-53.
[5] 杭晓亚, 柳叙丰, 赵泽昆. 基于GA-BP神经网络的青岛房价预测[J]. 四川建筑, 2015, 35(6): 233-236. HANG Xiaoya, LIU Xufeng, ZHAO Zekun. On the prediction of commercial housing price based on GA-BP neural network model[J]. Sichuan Architecture, 2015, 35(6): 233-236.
[6] 李春生,李霄野,张可佳. 基于遗传算法改进的BP神经网络房价预测分析[J]. 计算机技术与发展, 2018, 28(8): 144-147. LI Chunsheng, LI Xiaoye, ZHANG Kejia. Price forecasting analysis of BP neural network based on improved genetic algorithm[J]. Computer Technology and Devel-opment, 2018, 28(8): 144-147.
[7] 高文. 基于遗传算法优化的BP神经网络对房价预测的研究[D]. 延安:延安大学, 2019. GAO Wen. Study on house price predict based on bp neural network by genetic algorithm[D]. Yan'an: Yan'an University, 2019.
[8] 张卉. 基于粒子群优化BP神经网络的房价预测[J]. 价值工程, 2012, 31(14): 207-209. ZHANG Hui. BP network model based on PSO for house price forecasting[J]. Value Engineering, 2012, 31(14): 207-209.
[9] 唐晓彬, 张瑞, 刘立新. 基于蝙蝠算法SVR模型的北京市二手房价预测研究[J]. 统计研究, 2018, 35(11): 71-81. TANG Xiaobin, ZHANG Rui, LIU Lixin. Research on forecast of second-hand house price in Beijing based on SVR model of bat algorithm[J]. Statistical Research, 2018, 35(11): 71-81.
[10] 吴雨. 基于模拟退火算法的改进极限学习机[J]. 计算机系统应用, 2020, 29(2): 163-168. WU Yu. Improved extreme learning machine based on simulated annealing algorithm[J]. Computer System Application, 2020, 29(2): 163-168.
[11] 乔维德. 基于BP神经网络模型的商品房价格预测研究[J]. 常州工程职业技术学院高职研究, 2020(1): 35-42. QIAO Weide. On the prediction of commercial housing price based on BP neural network model[J]. Higher Vocational Studies of Changzhou Vocational Institute of Engineering, 2020(1): 35-42.
[12] 刘生建, 杨艳, 周永权. 一种群体智能算法-狮群算法[J]. 模式识别与人工智能, 2018, 31(5): 431-441. LIU Shengjian, YANG Yan, ZHOU Yongquan. A swarm intelligence algorithm:lion swarm optimization[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(5): 431-441.
[13] KENNEDY J, EBERHART R C. Particle swarmoptimization[C] //Proceeding of the IEEE International Conference on Neural Networks. Washington, USA: IEEE, 1995: 1942-1948.
[14] EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C] //Proceeding of the 6th International Symposium on Micro Machine and Human Science. Washington, USA: IEEE, 1995: 39-43.
[15] 江铭炎, 袁东风. 人工蜂群算法及其应用[M]. 北京: 科学出版社, 2014.
[16] 江铭炎, 袁东风. 人工鱼群算法及其应用[M]. 北京: 科学出版社, 2012.
[17] RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: a gravitational search algorithm[J]. Information Science, 2009, 179(13): 2232-2248.
[18] DHIMAN G, KUMAR V. Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems, 2019, 165: 169-196.
[19] PRICE K V, AWAD N H, ALI M Z, SUGANTHAN P N. Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization[R]. Singapore: Nanyang Technological University of Singapore, 2018.
[20] 阎平凡,张长水. 人工神经网络与模拟进化计算[M]. 北京: 清华大学出版社, 2000.
[1] 孙东磊,王艳,于一潇,韩学山,杨明,闫芳晴. 基于BP神经网络的短期光伏集群功率区间预测[J]. 山东大学学报 (工学版), 2020, 50(5): 70-76.
[2] 金保明,卢光毅,王伟,杜伦阅. 基于弹性梯度下降算法的BP神经网络降雨径流预报模型[J]. 山东大学学报 (工学版), 2020, 50(3): 117-124.
[3] 郑店坤,许同乐,尹召杰,孟庆民. 改进PSO-BP神经网络对尾矿坝地下水位的预测方法[J]. 山东大学学报 (工学版), 2019, 49(3): 108-113.
[4] 杨亚楠,夏斌,谢楠,袁文浩. 基于BP神经网络和多元Taylor级数的混合定位算法[J]. 山东大学学报 (工学版), 2019, 49(1): 36-40.
[5] 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83.
[6] 姚福安,庞向坤,焦营营,王忠林,张锡满 . 基于三色法和BP神经网络的回转窑温度检测[J]. 山东大学学报(工学版), 2008, 38(2): 61-65 .
[7] 高小伟,蒋晓芸 . BP神经网络在入侵检测系统中的应用及优化[J]. 山东大学学报(工学版), 2006, 36(6): 107-110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!