山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 76-83.doi: 10.6040/j.issn.1672-3961.0.2014.214
刘杰1, 杨鹏2, 吕文生1, 刘阿古达木1, 刘俊秀2
LIU Jie1, YANG Peng2, LYU Wensheng1, LIU Agudamu1, LIU Junxiu2
摘要: 为得出拟合效果最佳的预测模型,建立了多元回归和机器学习预测模型对PM2.5质量浓度进行预测。在输入气象因素的基础上,引入污染物质量浓度基础值和周期因素两类变量作为预测输入,并对4种预测模型进行对比研究。研究结果表明:对预测输入进行改进后,多元线性回归预测模型拟合优度由0.52提高至0.64,所选取的气象参数、污染物质量浓度基础值和周期因素能较好地描述PM2.5质量浓度的日变化情况;与多元线性回归预测模型相比,BP神经网络和支持向量机两种预测模型能较好地捕捉PM2.5质量浓度与预测输入之间的非线性影响规律,整体拟合优度分别达0.69和0.74,预测准确度较高;支持向量机预测模型可作为PM2.5质量浓度预测的首选方法。
中图分类号:
[1] 刘杰, 杨鹏, 吕文生. 北京大气颗粒物污染特征及空间分布插值分析[J]. 北京科技大学学报, 2014, 36(9):1269-1279. LIU Jie, YANG Peng, L Wensheng. Pollution characteristics of particulate matters and interpolation analysis of their spatial distribution in Beijing[J]. Journal of University of Science and Technology Beijing, 2014, 36(9):1269-1279. [2] 刘杰, 杨鹏, 吕文生, 等. 模糊时序与支持向量机建模相结合的PM2.5质量浓度预测[J]. 北京科技大学学报, 2014, 36(12):1694-1702. LIU Jie, YANG Peng, L Wensheng, et al. Prediction model of PM2.5 mass concentrations based on fuzzy time series and support vector machine[J]. Journal of University of Science and Technology Beijing, 2014, 36(12):1694-1702. [3] ZIOMAS I C, MELAS D, ZEREFOS C S, et al. Forecasting peak pollutant levels from meteorological variables[J]. Atmospheric Environment, 1995, 29(24):3703-3711. [4] CHALOULAKOU A, KASSOMENOS P, SPYRELLIS N, et al. Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece[J]. Atmospheric Environment, 2003, 37(5):649-660. [5] HUSSEIN T, KARPPINEN A, KUKKONEN J, et al. Meteorological dependence of size-fractionated number concentrations of urban aerosol particles[J]. Atmospheric Environment, 2006, 40(8):1427-1440. [6] 于涛, 王可丽, 李芳, 等. 兰州市大气环境质量影响因素多元统计模型研究[J]. 西安建筑科技大学学报:自然科学版, 2009, 41(5):723-729. YU Tao, WANG Keli, LI Fang, et al. Study on multi-variate statistical analysis model of influencing factors on the atmospheric environmental quality in Lanzhou city[J]. Journal of Xi'an University of Archrchitecture and Technology:Natural Science Edition, 2009, 41(5):723-729. [7] KUKKONEN J, PARTANEN L, KARPPINEN A, et al. Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurement in central Helsinki[J]. Atmospheric Environment, 2003, 37(32):4539-4550. [8] MCKENDRY I. Evaluation of artificial neural networks for fine particulate pollution(PM10 and PM2.5) forecasting[J]. Journal of the Air & Waste Management Association, 2002, 52(9):1096-1101. [9] 石灵芝, 邓启红, 路婵, 等. 基于BP人工神经网络的大气颗粒物PM10质量浓度预测[J]. 中南大学学报:自然科学版, 2012, 43(5):1969-1974. SHI Lingzhi, DENG Qihong, LU Chan, et al. Prediction of PM10 mass concentrations based on BP artificial neural network[J]. Journal of Central University:Science and Technology, 2012, 43(5):1969-1974. [10] GRIVAS G, CHALOULAKOU A. Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece[J]. Atmospheric Environment, 2006, 40(7):1216-1229. [11] CAI M, YIN Y, XIE M. Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach[J]. Transportation Research:Part D, 2009, 14(1):32-41. [12] 孟健, 付桦, 赵晓林, 等. 北京西三环路分时段车流量分析[J]. 首都师范大学学报:自然科学版, 2006, 27(2):89-98. MENG Jian, FU Hua, ZHAO Xiaolin, et al. Research progress on the mechanism of nitrogen and phosphorus in non-point source pollution[J]. Journal of Capital Normal University:Natural Science Edition, 2006, 27(2):89-98. [13] 潘本锋, 赵熠琳, 李健军, 等. 气象因素对大气中PM2.5的去除效应[J]. 环境科技, 2012, 25(6):41-44. PAN Benfeng, ZHAO Yilin, LI Jianjun, et al. Analysis of the scavenging efficiency on PM2.5 concentration of some kinds of meteorological factors[J]. Environment Science and Technology, 2012, 25(6):41-44. [14] CAPPARUCCIA R, DE L R, MARCHITTO E. Integrating support vector machines and neural networks[J]. Neural Networks, 2007, 20(5):590-597. [15] WANG Wenjian, MEN CHANGqian, LU Weizhen. Online prediction model based on support vector machine[J]. Neurocomputing, 2008, 71(4/6):550-558. [16] ANGUITA D, CHIO A, PISCHIUTTA S. A support vector machine with integer parameters[J]. Neurocomputing, 2008, 72(1/3):480-489. [17] 姜雪, 卢文喜, 杨青春, 等. 应用支持向量机评价土壤环境质量[J]. 中国环境科学, 2014, 34(5):1229-1235. JIANG Xue, LU Wenxi, YANG Qingchun, et al. Application of support vector machine in soil environmental quality assessment[J]. China Environmental Science, 2014, 34(5):1229-1235. [18] CORTES C, VAPNIK V. Support-Vector networks[J]. Machine Learning, 1995(20):273-297. [19] ANDERSON J. An introduction to neural networks[M]. London, the UK:MIT Press, 1995. [20] CANEVALE C, FINZI G, PISONI E, et al. Neuro-fuzzy and neural network systems for air quality control[J]. Atmospheric Environment, 2008, 7(64):1-11. [21] SANCHEZ A D. Advanced support vector machines and kernel methods[J]. Neurocomputing, 2003, 55(1):5-20. [22] 刘春波, 王群芳, 潘丰. 基于蚁群优化算法的支持向量机参数选择及仿真[J]. 中南大学学报:自然科学版, 2008, 39(6):1309-1313. LIU Chunbo, WANG Qunfang, PAN Feng. Parameters selection and stimulation of support vector machines based on ant colony optimization algorithm[J]. Journal of Central South University:Science and Technology, 2008, 39(6):1309-1313. [23] RAKOTOMAMONJYA A, RICHE R L, GUALANDRISC D, et al. A comparison of statistical learning approaches for engine torque estimation[J]. Control Engineering Practice, 2008, 16(1):43-55. [24] CHALOULAKOU A, GRIVAS G, SPYRELLIS N. Neural network and multiple regression models for PM10 prediction in Athens:a comparative assessment[J]. Journal of the Air & Waste Management Association, 2003, 53(10):1183-1190. [25] LIU W Z, WANG W J, WANG X K, et al. Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong[J]. Environment Research, 2004, 96(1):79-87. |
[1] | 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报(工学版), 2018, 48(5): 103-108. |
[2] | 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16. |
[3] | 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12. |
[4] | 刘洋,刘博,王峰. 基于Parameter Server框架的大数据挖掘优化算法[J]. 山东大学学报(工学版), 2017, 47(4): 1-6. |
[5] | 刘岩,李幼军,陈萌. 基于EMD和SVM的抑郁症静息态脑电信号分类研究[J]. 山东大学学报(工学版), 2017, 47(3): 21-26. |
[6] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
[7] | 魏波,张文生,李元香,夏学文,吕敬钦. 一种选择特征的稀疏在线学习算法[J]. 山东大学学报(工学版), 2017, 47(1): 22-27. |
[8] | 周旺,张晨麟,吴建鑫. 一种基于Hartigan-Wong和Lloyd的定性平衡聚类算法[J]. 山东大学学报(工学版), 2016, 46(5): 37-44. |
[9] | 孟令恒,丁世飞. 基于单静态图像的深度感知模型[J]. 山东大学学报(工学版), 2016, 46(3): 37-43. |
[10] | 刘晓勇. 一种基于树核函数的半监督关系抽取方法研究[J]. 山东大学学报(工学版), 2015, 45(2): 22-26. |
[11] | 浩庆波, 牟少敏, 尹传环, 昌腾腾, 崔文斌. 一种基于聚类的快速局部支持向量机算法[J]. 山东大学学报(工学版), 2015, 45(1): 13-18. |
[12] | 郑毅, 朱成璋. 基于深度信念网络的PM2.5预测[J]. 山东大学学报(工学版), 2014, 44(6): 19-25. |
[13] | 李发权, 杨立才, 颜红博. 基于PCA-SVM多生理信息融合的情绪识别方法[J]. 山东大学学报(工学版), 2014, 44(6): 70-76. |
[14] | 周咏梅1,杨佳能2,阳爱民2. 面向文本情感分析的中文情感词典构建方法[J]. 山东大学学报(工学版), 2013, 43(6): 27-33. |
[15] | 王昊,华继学,范晓诗. 基于双联支持向量机的入侵检测技术[J]. 山东大学学报(工学版), 2013, 43(6): 53-56. |
|