您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (3): 37-44.doi: 10.6040/j.issn.1672-3961.0.2020.320

• • 上一篇    下一篇

基于模型预测控制的四足机器人斜坡自适应调整算法与实现

梁启星1,李彬1*,李志2,张慧2,荣学文3,范永4   

  1. 1.齐鲁工业大学(山东省科学院)数学与统计学院, 山东 济南 250353;2.齐鲁工业大学(山东省科学院)电气工程与自动化学院, 山东 济南 250353;3.山东大学控制科学与工程学院, 山东 济南 250061;4.山东交通学院轨道交通学院, 山东 济南 250357
  • 出版日期:2021-06-20 发布日期:2021-06-24
  • 作者简介:梁启星(1996— ),男,山东青岛人,硕士研究生,主要研究方向为四足机器人运动控制. E-mail:17854117838@163.com. *通信作者简介:李彬(1979— ),男,山东单县人,教授,博士,主要研究方向为神经网络,机器人智能控制. E-mail:ribbenlee@126.com
  • 基金资助:
    山东省高等学校青创科技支持计划(2019KJN011);国家自然科学基金资助项目(61973185);山东省重点研发计划资助项目(2018GGX103054);山东省自然科学基金资助项目(ZR2020MF097)

Algorithm of adaptive slope adjustment of quadruped robot based on model predictive control and its application

LIANG Qixing1, LI Bin1*, LI Zhi2, ZHANG Hui2, RONG Xuewen3, FAN Yong4   

  1. 1. School of Mathematics and Statistics, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, Shandong, China;
    2. School of Electrical Engineering and Automation, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, Shandong, China;
    3. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China;
    4. School of Rail Transportation, Shandong Jiaotong University, Jinan 250357, Shandong, China
  • Online:2021-06-20 Published:2021-06-24

摘要: 为了实现四足机器人在有斜坡地形下的自适应稳定行走,在模型预测控制基础上进行扩展,设计四足机器人在斜坡上的足端位置调整与躯干姿态自适应调整策略。由惯性测量单元(inertial measurement unit,IMU)测得机器人运动时的姿态参数,通过推导的足端轨迹算法,得到足端位置的坐标映射,调整机器人在斜坡上的重心位置;通过设计的“虚拟斜坡”躯干姿态调整算法,实现机器人在上坡过程中躯干姿态的自适应调整。利用实验室的四足机器人物理平台和搭建的实际斜坡地形环境,验证了所提算法的可行性和有效性。机器人平台验证结果表明,所提出的斜坡自适应控制方法提高了机器人在坡面上的稳定裕度,优化了足端运动空间,实现了四足机器人的自适应爬坡调整。

关键词: 四足机器人, 模型预测控制, 斜坡, 身体姿态, 自适应调整

Abstract: In order to realize the adaptive and stable walking of the quadruped robot on slope terrain, the adaptive adjustment strategies of both feet position and trunk posture of quadruped robot on slope were proposed based on the model predictive control. The posture determination parameters of the robot in locomotion were measured by the inertial measurement unit(IMU). By means of the derived foot end trajectory algorithm, the coordinate mapping of its toe position was obtained in order to adjust the center of gravity of the robot on the slope. Then the adaptive adjustment of the trunk posture of the robot in the process of climbing could be achieved through the trunk posture adjustment algorithm by means of designed “virtual slope”. With the help of the physical platform of quadruped robot and the actual slope terrain environment built in the laboratory, the feasibility and validity of the proposed algorithm are verified. Experimental result showed that the proposed slope adaptive control method had improved the stability margin of the robot on the slope and optimized the foot end motion space, thus leading to the realization of adaptive adjustment in climbing slope for the quadruped robot.

Key words: quadruped robot, model predictive control, slope, body posture, adaptive adjustment

中图分类号: 

  • TP242
[1] HE Jingye, SHAO Junpeng, SUN Guitao, et al. Survey of quadruped robots coping strategies in complex situations[J]. Electronics, 2019, 8(12): 1-16.
[2] WANG A S, CHEN W W, LIN P. Control of a 2-D bounding passive quadruped model with poincar? map approximation and model predictive control[C] //International Conference on Advanced Robotics & Intelligent Systems. Taipei, China: IEEE, 2017: 1-6.
[3] HORVAT T, MELO K, IJSPEERT A J. Model predictive control based framework for CoM control of a quadruped robot[C] //2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, Canada: IEEE, 2017: 3372-3378.
[4] FARSHIDIAN F, JELAVI E, SATAPATHY A, et al. Real-time motion planning of legged robots: a model predictive control approach[C] //International Conference on Humanoid Robotics. Birmingham, England: IEEE, 2017: 577-584.
[5] CARLO J D, WENSING P M, KATZ B, et al. Dynamic locomotion in the MIT Cheetah 3 through convex model predictive control[C] //International Conference on Intelligent Robots and Systems(IROS). Madrid, Spain: IEEE, 2018: 1-9.
[6] NEUNERT M, STAUBLE M, GIFTTHALER M, et al. Whole-body nonlinear model predictive control through contacts for quadrupeds[J]. IEEE Robotics & Automation Letters, 2018, 3(3): 1458-1465.
[7] GUO Jiaxin, ZHENG Yukun, QU Daoxiao, et al. An algorithm of foot end trajectory tracking control for quadruped robot based on model predictive control[C] //International Conference on Robotics and Biomimetics(ROBIO). Dali, China: IEEE, 2019: 828-833.
[8] SHI Yapeng, WANG Pengfei, Li Mantian, et al. Model predictive control for motion planning of quadrupedal locomotion[C] //2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics. Toyonaka, Japan: IEEE, 2019: 87-92.
[9] MA S, TOMIYAMA T, WADA H. Omni-directional walking of a quadruped robot[C] //International Conference on Intelligent Robots & Systems. Lausanne, Switzerland: IEEE, 2004: 2605-2612.
[10] YIN Peng, WANG Pengfei, LI Mantian, et al. A novel control strategy for quadruped robot walking over irregular terrain[C] //Robotics, Automation & Mechatronics. Qingdao, China: IEEE, 2011: 184-189.
[11] 孟健,李贻斌,李彬. 四足机器人对角小跑步态全方位移动控制方法及其实现[J].机器人, 2015, 37(1): 74-84. MENG Jian, LI Yibin, LI Bin. Omnidirectional movement control method and realization of quadruped robot in diagonal trot gait[J]. Robot, 2015, 37(1): 74-84.
[12] MENG Xiangrui, ZHOU Chao, CAO Zhiqiang, et al. A slope location and orientation estimation method based on 3D LiDAR suitable for quadruped robots[C] //IEEE International Conference on Robotics & Biomimetics. Qingdao, China: IEEE, 2016: 197-201.
[13] 韩宝玲,贾燕,李华师,等.四足机器人坡面运动时的姿态调整技术[J].北京理工大学学报,2016, 36(3): 242-246. HAN Baoling, JIA Yan, LI Huashi, et al. Posture adjustment technology of quadruped robot in slope movement[J]. Journal of Beijing University of Technology, 2016, 36(3): 242-246.
[14] AGRAWAL A, JADHAV A, PAREEKUTTY N, et al. Terrain adaptive posture correction in quadruped for locomotion on unstructured terrain[J]. Proceedings of the Advances in Robotics, 2017:1-6.
[15] LEE J H, PARK J H. Optimization of postural transition scheme for quadruped robots trotting on various surfaces[J]. IEEE Access, 2019: 168126-168140.
[16] JONES W, BLUM T, YOSHIDA K. Adaptive slope locomotion with deep reinforcement learning[C] //International Symposium on System Integration. Honolulu, USA: IEEE, 2020:546-550.
[17] BLEDT G, POWELL M J, KATZ B, et al. MIT Cheetah 3: design and control of a robust, dynamic quadruped robot[C] //IEEE/RSJ International Con-ference on Intelligent Robots and Systems(IROS). Madrid, Spain: IEEE, 2019:2245-2252.
[18] ZHANG Si, GAO Junyao, DUAN Xingguang, et al. Trot pattern generation for quadruped robot based on the ZMP stability margin[C] //International Conference on Complex Medical Engineering. Beijing, China: IEEE, 2013:608-613.
[19] 马宗利, 张培强, 吕荣基,等. 四足机器人坡面行走稳定性分析[J]. 东北大学学报(自然科学版), 2018, 39(5):673-678. MA Zongli, ZHANG Peiqiang, L(¨overU)Rongji, et al. Stability analysis of quadruped robot walking on slope[J]. Journal of Northeast University(Natural Science Edition), 2018, 39(5):673-678.
[20] KO C C, CHEN S C, LI C H, et al. Trajectory planning and four-leg coordination for stair climbing in a quadruped robot[C] //IEEE/RSJ International Con-ference on Intelligent Robots & Systems. Taipei, China: IEEE, 2010:5335-5340.
[1] 辛亚先,李贻斌,李彬,荣学文. 四足机器人静-动步态平滑切换算法[J]. 山东大学学报(工学版), 2018, 48(4): 42-49.
[2] 刘哲,宋锐,邹涛. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018, 48(1): 42-49.
[3] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28-34.
[4] 兰义华,任浩征*,张勇,赵雪峰. 一种基于“当前”模型的改进卡尔曼滤波算法[J]. 山东大学学报(工学版), 2012, 42(5): 12-17.
[5] 李彬 李贻斌 阮久宏 宋洪军. 基于Wilson-Cowan神经振荡器的四足机器人步态规划研究[J]. 山东大学学报(工学版), 2010, 40(1): 6-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[2] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[3] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[4] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[5] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[6] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[7] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[8] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[9] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .
[10] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .