您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 42-49.doi: 10.6040/j.issn.1672-3961.0.2017.364

• 机器学习与数据挖掘 • 上一篇    下一篇

四足机器人静-动步态平滑切换算法

辛亚先1,李贻斌1,李彬2*,荣学文1   

  1. 1. 山东大学控制科学与工程学院, 山东 济南 250061;2. 齐鲁工业大学(山东省科学院)理学院, 山东 济南 250353
  • 收稿日期:2017-07-22 出版日期:2018-08-20 发布日期:2017-07-22
  • 通讯作者: 李彬(1979— ),男,山东单县人,工学博士,副教授,主要研究方向为神经网络,四足机器人步态规划与控制.E-mail:ribbenlee@126.com E-mail:xinyaxian1990@126.com
  • 作者简介:辛亚先(1990— ),女,山东济南人,博士研究生,主要研究方向为机器人智能控制. E-mail:xinyaxian1990@126.com
  • 基金资助:
    国家自然科学基金资助项目(61773226,U1613223,61703243);国家863计划资助项目(2015AA042201)

Smooth walk-to-trot gait transition algorithm for quadruped robot

XIN Yaxian1, LI Yibin1, LI Bin2*, RONG Xuewen1   

  1. 1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. School of Science, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, Shandong, China
  • Received:2017-07-22 Online:2018-08-20 Published:2017-07-22

摘要: 为提高四足机器人对不同地形的适应能力,给出间歇静步态向对角小跑步态切换(walk-to-trot)的不同情况以及最优(在保证稳定切换的前提下,实现速度的平滑变换和不同步态情况下的最短时间切换)切换方法。为保证步态切换过程中的平滑性,给出关于时间的速度公式,使机体重心保持恒定加速度;为保证切换阶段的稳定性,利用改进的泛稳定裕度判别法(wide stability margin method, MWSM),通过调整足端与质心相对位置,消除步态变换过程中由惯性力导致零力矩点后移对稳定性的影响。基于Webots仿真软件,建立四足机器人仿真模型,验证方法的可行性和有效性。该方法可应用于间歇静步态中的6个状态点并将其平滑、稳定的切换为对角小跑步态。

关键词: 四足机器人, 对角小跑步态, 平滑步态变换, 间歇静步态

Abstract: In order to improve the adaptability of quadruped robot for various terrains, different cases that could occur when robot changed its gaits from walk to trot were analyzed and the optimal transition algorithms which could let gait transition more smooth and waste least time when robot kept stability were proposed. In order to ensure the smoothness of transition sequence, the speed formula of time was given to keep the center of gravity constant acceleration. An algorithm named modified wide stability margin method(MWSM)was proposed to offset the stand back influenced by inertial force and caused by the acceleration through adjust the relative position of the trunk and four feet. The model of quadruped robot was constructed based on the robot simulator Webots, and simulation results showed the validity and effectiveness of the algorithm. The approach could be applied in six points of one static walk circle and switched to trot smoothly and steadily.

Key words: quadruped robot, static walk, trot, smooth gait transition

中图分类号: 

  • TP242
[1] GEHRING C, COROS S, HUTTER M, et al. Control of dynamic gaits for a quadrupedal robot[C] //Proceedings of IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE Press, 2013:3287-3292.
[2] GRIFFIN T, KRAM R, WICKLER S, et al. Biomechanical and energetic determinants of the walk-trot transition in horses[J]. Journal of Experimental Biology, 2004, 207(24):4215-4223.
[3] IJSPEERT A. Biorobotics: Using robots to emulate and investigate agile locomotion[J]. Science, 2014, 346(6206):196-203.
[4] LIU Chengju, CHEN Qijun, WANG Guoxing. Adaptive walking control of quadruped robots based on central pattern generator(CPG)and reflex[J]. Journal of Control Theory and Applications, 2013, 11(3): 386-392.
[5] ZHANG Xiuli, ZHENG Haojun, CHEN Lianfeng. Gait transition for a quadrupedal robot by replacing the gait matrix of a central pattern generator model[J]. Advanced Robotics, 2012, 20(7): 849-866.
[6] CAO Qu, VAN Rijn, POULAKAKIS I. On the control of gait transitions in quadrupedal running[C] //Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE Press, 2015: 5136-5141.
[7] MORADI K, FATHIAN M, GHIDARY S S. Omnidirectional walking using central pattern generator[J]. International Journal of Machine Learning & Cybernetics, 2014(6):1-11.
[8] LI Junmin, WANG Jinge, YANG Simon X, et al. Gait planning and stability control of a quadruped robot[J]. Computational Intelligence & Neuroscience, 2016, 2016:9853070.
[9] 李贻斌, 李彬, 荣学文, 等. 液压驱动四足仿生机器人的结构设计和步态规划[J]. 山东大学学报(工学版),2011, 41(5): 32-36. LI Yibin, LI Bin, RONG Xuewen, et al. Mechanical design and gait planning of a hydraulically actuated quadruped bionic robot[J]. Journal of Shandong University(Engineering Science), 2011, 41(5):32-36.
[10] KIMURA H, FUKUOKA Y, COHEN A. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts[J]. International Journal of Robotics Research, 2007, 26(5):475-490.
[11] SANTOS C, MATOS V. Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach[J]. Robotics and Autonomous Systems, 2011, 59(9):620-634.
[12] LI Bin, LI Yibin, RONG Xuewen. Gait generation and transitions of quadruped robot based on Wilson-Cowan weakly neural networks[C] //Proceedings of IEEE International Conference on Robotics and Biomimetics. Tianjin,China: IEEE Press, 2010: 19-24.
[13] ASADI F, KHORRAM M, MOOSAVIAN S A A. CPG-based gait transition of a quadruped robot[C] //Proceedings of Rsi International Conference on Robotics and Mechatronics. Tehran, Iran: IEEE Press, 2016:210-215.
[14] ZHAO Danpu, XU Jing, WU Dan, et al. Gait definition and successive gait-transition method based on energy consumption for a quadruped[J]. Chinese Journal of Mechanical Engineering, 2012, 25(1):29-37.
[15] LIU An, WU Heng, LI Yongzheng. Gait transition of quadruped robot using rhythm control and stability analysis[C] //Proceedings of IEEE International Conference on Robotics and Biomimetics. Shenzhen, China: IEEE Press, 2013:2535-2539.
[16] SHAHBAZI M, LOPES G, BABUSKA R. Automated transitions between walking and running in legged robots[C] //Proceedings of World Congress on the International Federation of Automatic Control. Cape Town, South August: IFAC, 2014:2171-2176.
[17] AOI S, YAMASHITA T, ICHIKAWA A, et al. Hysteresis in gait transition induced by changing waist joint stiffness of a quadruped robot driven by nonlinear oscillators with phase resetting[C] //Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE Press, 2010:1915-1920.
[18] MASAKADO S, ISHII T, ISHII K. A gait-transition method for a quadruped walking robot[C] //Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics Monterey. California, USA: IEEE Press, 2005:432-437.
[19] LEE Y, TRAN D, HYUN J, et al. A gait transition algorithm based on hybrid walking gait for a quadruped walking robot[J]. Intelligent Service Robotics, 2015, 8(4):185-200.
[20] KOO I, TRONG T, LEE Y, et al. Biologically inspired gait transition control for a quadruped walking robot[J]. Autonomous Robots, 2015, 39(2):1-14.
[21] FUKUOKA Y, KIMURA H, HADA Y, et al. Adaptive dynamic walking of a quadruped robot 'Tekken' on irregular terrain using a neural system model[C] //Proceedings of IEEE International Conference on Robotics and Automation. Taipei, China: IEEE Press, 2003:2037-2042.
[1] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28-34.
[2] 李彬 李贻斌 阮久宏 宋洪军. 基于Wilson-Cowan神经振荡器的四足机器人步态规划研究[J]. 山东大学学报(工学版), 2010, 40(1): 6-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙国华,吴耀华,黎伟. 消费税控制策略对供应链系统绩效的影响[J]. 山东大学学报(工学版), 2009, 39(1): 63 -68 .
[2] 王,张艳宁,申家振,刘俊成 . 基于信息测度和支持向量机的图像边缘检测[J]. 山东大学学报(工学版), 2006, 36(3): 95 -99 .
[3] 李辉平, 赵国群, 张雷, 贺连芳. 超高强度钢板热冲压及模内淬火工艺的发展现状[J]. 山东大学学报(工学版), 2010, 40(3): 69 -74 .
[4] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[5] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[6] 王静,李玉江,张晓瑾, 毕研俊,陈位锁 . 粉煤灰去除水中活性紫KN-B[J]. 山东大学学报(工学版), 2006, 36(6): 100 -103 .
[7] 孙炜伟,王玉振. 考虑饱和的发电机单机无穷大系统有限增益镇定[J]. 山东大学学报(工学版), 2009, 39(1): 69 -76 .
[8] 孙玉利,李法德,左敦稳,戚美 . 直立分室式流体连续通电加热系统的升温特性[J]. 山东大学学报(工学版), 2006, 36(6): 19 -23 .
[9] 薛成骞,董建文,孟宪锋,常虹,曹宁,陈华英,李木森 . C/C+HA骨植入材料对杂交波尔山羊生理生化机能的影响[J]. 山东大学学报(工学版), 2008, 38(3): 73 -76 .
[10] 薛翊国,李术才,赵岩,苏茂鑫,李为腾,丁志海. 青岛胶州湾海底隧道F44含水断层注浆前后TSP探测分析[J]. 山东大学学报(工学版), 2009, 39(2): 108 -112 .