山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (3): 37-44.doi: 10.6040/j.issn.1672-3961.0.2020.320
梁启星1,李彬1*,李志2,张慧2,荣学文3,范永4
LIANG Qixing1, LI Bin1*, LI Zhi2, ZHANG Hui2, RONG Xuewen3, FAN Yong4
摘要: 为了实现四足机器人在有斜坡地形下的自适应稳定行走,在模型预测控制基础上进行扩展,设计四足机器人在斜坡上的足端位置调整与躯干姿态自适应调整策略。由惯性测量单元(inertial measurement unit,IMU)测得机器人运动时的姿态参数,通过推导的足端轨迹算法,得到足端位置的坐标映射,调整机器人在斜坡上的重心位置;通过设计的“虚拟斜坡”躯干姿态调整算法,实现机器人在上坡过程中躯干姿态的自适应调整。利用实验室的四足机器人物理平台和搭建的实际斜坡地形环境,验证了所提算法的可行性和有效性。机器人平台验证结果表明,所提出的斜坡自适应控制方法提高了机器人在坡面上的稳定裕度,优化了足端运动空间,实现了四足机器人的自适应爬坡调整。
中图分类号:
[1] | HE Jingye, SHAO Junpeng, SUN Guitao, et al. Survey of quadruped robots coping strategies in complex situations[J]. Electronics, 2019, 8(12): 1-16. |
[2] | WANG A S, CHEN W W, LIN P. Control of a 2-D bounding passive quadruped model with poincar? map approximation and model predictive control[C] //International Conference on Advanced Robotics & Intelligent Systems. Taipei, China: IEEE, 2017: 1-6. |
[3] | HORVAT T, MELO K, IJSPEERT A J. Model predictive control based framework for CoM control of a quadruped robot[C] //2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, Canada: IEEE, 2017: 3372-3378. |
[4] | FARSHIDIAN F, JELAVI E, SATAPATHY A, et al. Real-time motion planning of legged robots: a model predictive control approach[C] //International Conference on Humanoid Robotics. Birmingham, England: IEEE, 2017: 577-584. |
[5] | CARLO J D, WENSING P M, KATZ B, et al. Dynamic locomotion in the MIT Cheetah 3 through convex model predictive control[C] //International Conference on Intelligent Robots and Systems(IROS). Madrid, Spain: IEEE, 2018: 1-9. |
[6] | NEUNERT M, STAUBLE M, GIFTTHALER M, et al. Whole-body nonlinear model predictive control through contacts for quadrupeds[J]. IEEE Robotics & Automation Letters, 2018, 3(3): 1458-1465. |
[7] | GUO Jiaxin, ZHENG Yukun, QU Daoxiao, et al. An algorithm of foot end trajectory tracking control for quadruped robot based on model predictive control[C] //International Conference on Robotics and Biomimetics(ROBIO). Dali, China: IEEE, 2019: 828-833. |
[8] | SHI Yapeng, WANG Pengfei, Li Mantian, et al. Model predictive control for motion planning of quadrupedal locomotion[C] //2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics. Toyonaka, Japan: IEEE, 2019: 87-92. |
[9] | MA S, TOMIYAMA T, WADA H. Omni-directional walking of a quadruped robot[C] //International Conference on Intelligent Robots & Systems. Lausanne, Switzerland: IEEE, 2004: 2605-2612. |
[10] | YIN Peng, WANG Pengfei, LI Mantian, et al. A novel control strategy for quadruped robot walking over irregular terrain[C] //Robotics, Automation & Mechatronics. Qingdao, China: IEEE, 2011: 184-189. |
[11] | 孟健,李贻斌,李彬. 四足机器人对角小跑步态全方位移动控制方法及其实现[J].机器人, 2015, 37(1): 74-84. MENG Jian, LI Yibin, LI Bin. Omnidirectional movement control method and realization of quadruped robot in diagonal trot gait[J]. Robot, 2015, 37(1): 74-84. |
[12] | MENG Xiangrui, ZHOU Chao, CAO Zhiqiang, et al. A slope location and orientation estimation method based on 3D LiDAR suitable for quadruped robots[C] //IEEE International Conference on Robotics & Biomimetics. Qingdao, China: IEEE, 2016: 197-201. |
[13] | 韩宝玲,贾燕,李华师,等.四足机器人坡面运动时的姿态调整技术[J].北京理工大学学报,2016, 36(3): 242-246. HAN Baoling, JIA Yan, LI Huashi, et al. Posture adjustment technology of quadruped robot in slope movement[J]. Journal of Beijing University of Technology, 2016, 36(3): 242-246. |
[14] | AGRAWAL A, JADHAV A, PAREEKUTTY N, et al. Terrain adaptive posture correction in quadruped for locomotion on unstructured terrain[J]. Proceedings of the Advances in Robotics, 2017:1-6. |
[15] | LEE J H, PARK J H. Optimization of postural transition scheme for quadruped robots trotting on various surfaces[J]. IEEE Access, 2019: 168126-168140. |
[16] | JONES W, BLUM T, YOSHIDA K. Adaptive slope locomotion with deep reinforcement learning[C] //International Symposium on System Integration. Honolulu, USA: IEEE, 2020:546-550. |
[17] | BLEDT G, POWELL M J, KATZ B, et al. MIT Cheetah 3: design and control of a robust, dynamic quadruped robot[C] //IEEE/RSJ International Con-ference on Intelligent Robots and Systems(IROS). Madrid, Spain: IEEE, 2019:2245-2252. |
[18] | ZHANG Si, GAO Junyao, DUAN Xingguang, et al. Trot pattern generation for quadruped robot based on the ZMP stability margin[C] //International Conference on Complex Medical Engineering. Beijing, China: IEEE, 2013:608-613. |
[19] | 马宗利, 张培强, 吕荣基,等. 四足机器人坡面行走稳定性分析[J]. 东北大学学报(自然科学版), 2018, 39(5):673-678. MA Zongli, ZHANG Peiqiang, L(¨overU)Rongji, et al. Stability analysis of quadruped robot walking on slope[J]. Journal of Northeast University(Natural Science Edition), 2018, 39(5):673-678. |
[20] | KO C C, CHEN S C, LI C H, et al. Trajectory planning and four-leg coordination for stair climbing in a quadruped robot[C] //IEEE/RSJ International Con-ference on Intelligent Robots & Systems. Taipei, China: IEEE, 2010:5335-5340. |
[1] | 辛亚先,李贻斌,李彬,荣学文. 四足机器人静-动步态平滑切换算法[J]. 山东大学学报(工学版), 2018, 48(4): 42-49. |
[2] | 刘哲,宋锐,邹涛. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018, 48(1): 42-49. |
[3] | 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28-34. |
[4] | 兰义华,任浩征*,张勇,赵雪峰. 一种基于“当前”模型的改进卡尔曼滤波算法[J]. 山东大学学报(工学版), 2012, 42(5): 12-17. |
[5] | 李彬 李贻斌 阮久宏 宋洪军. 基于Wilson-Cowan神经振荡器的四足机器人步态规划研究[J]. 山东大学学报(工学版), 2010, 40(1): 6-9. |
|