您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (6): 119-126.doi: 10.6040/j.issn.1672-3961.0.2019.503

• 机械与能动工程 • 上一篇    

基于孔隙尺度下丝网多孔介质通道流阻特性

胡伟()   

  1. 济南市生态环境局历城分局, 山东 济南 250100
  • 收稿日期:2019-09-03 出版日期:2019-12-20 发布日期:2019-12-17
  • 作者简介:胡伟(1969—),男,山东济南人,高级工程师,主要研究方向为环境保护工程及技术. E-mail:lcjsxmk@163.com

Flow resistance characteristics of wire mesh porous media channel based on pore-scale

Wei HU()   

  1. Licheng Branch, Jinan Municipal Bureau of Ecological Environment, Jinan 250100, Shandong, China
  • Received:2019-09-03 Online:2019-12-20 Published:2019-12-17

摘要:

基于丝网多孔介质孔隙通道数值分析,研究不同几何参数的丝网多孔介质通道内的流阻特性ΔP、黏性阻力Au与惯性阻力Bu2等变化特性。通过CFD软件建立三维稳态修正k-ω湍流模型保证计算精度,并选择5种不同丝径和孔径的4单元孔隙模型,开展低入口流速范围内的流阻特性研究。根据数值分析结果,得到不同构型下孔隙级通道的流阻特性,显示出构型对丝网通道内非线性流动阻力特性产生的显著影响。结果表明,丝网构型角度越小(θ=45°~90°),通道内流动阻力越大,而分压占比规律一致;流速越大(v=0.2~1.0 m/s),则非线性作用越大,惯性阻力占比越多。

关键词: 数值模拟, 几何构型, 丝网多孔介质, Forchheimer模型, 压降

Abstract:

Through the pore-scale of the mesh porous media channel numerical analysis, the flow resistance characteristics of wire mesh channel with different geometric parameters were studied, including pressure drop ΔP, viscous resistance Au and inertial resistance Bu2. A three-dimensional steady-state modified k-ωturbulence model was developed by CFD software, and five four-cell pore models with different wire diameters and pore diameters were selected. Numerical analysis on flow resistance characteristics in wire mesh velocity numbers, i.e., from 0.2 m/s to 1.0 m/s were performed. The characteristics of flow in pore-level channels with different configurations under the range of low velocity numbers were obtained. It was shown that the configuration had a significant influence on the nonlinear flow characteristics of the wire mesh channel. The results showed that the smaller the mesh configuration angle (θ=45°~90°), the greater flow resistance in the channel, however, the partial pressure ratio was the same. It also indicated that faster the flow velocity (v=0.2~1.0 m/s), the greater the nonlinear effect and more inertial resistance would be.

Key words: numerical simulation, geometric structure, wire mesh porous media, Forchheimer model, pressure drop

中图分类号: 

  • TB71+2

图1

金属丝网"

图2

单元金属丝网"

表1

丝网多孔介质的结构参数"

丝网构型 纬丝d2/mm 径丝d1/mm 孔径M1/mm 孔径M2/mm 夹角θ1/(°) 夹角θ2/(°)
W45 0.1 0.1 0.3 0.3 45 45
W60 0.1 0.1 0.3 0.3 60 60
W75 0.1 0.1 0.3 0.3 75 75
W90 0.1 0.1 0.3 0.3 90 90

图3

丝网多孔介质孔隙级通道模型"

图4

W90网格无关性验证"

图5

W90模拟数据与经验公式对比"

图6

W75模拟数据与经验公式对比"

图7

W60模拟数据与经验公式对比"

图8

W45模拟数据与经验对比"

图9

W90流速与压降的关系"

图10

W75流速与压降的关系"

图11

W60流速与压降的关系"

图12

W45流速与压降的关系"

表2

不同结构形式丝网的拟合参数"

丝网 A B K F R2
W90 106.31 439.17 9.93e-10 0.138 99.94
W75 112.81 472.29 9.20e-10 0.143 99.96
W60 140.75 559.53 6.80e-10 0.146 99.67
W45 212.37 832.06 4.70e-10 0.180 99.96

图13

Forchheimer系数A、B与丝网角度关系"

图14

流速与压降的关系"

图15

流速与各阻力占比关系"

图16

丝网角度与压降关系"

图17

丝网结构角度与惯性占比的关系"

1 LIU J F , WU W T , CHIU W C , et al. Measurement and correlation of friction characteristic of flow through foam matrixes[J]. Experimental Thermal and Fluid Science, 2006, 30 (4): 329- 336.
doi: 10.1016/j.expthermflusci.2005.07.007
2 CHILDS E C . Dynamics of fluids in porous media[J]. Engineering Geology, 1972, 7 (2): 174- 175.
3 FLEMISCH B , BERRE I , BOON W , et al. Benchmarks for single-phase flow in fractured porous media[J]. Advances in Water Resources, 2017, 111 (3): 1- 33.
4 SHEIKHOLESLAMI M . Numerical simulation of magnetic nanofluid natural convection in porous media[J]. Physics Letters A, 2017, 381 (5): 494- 503.
doi: 10.1016/j.physleta.2016.11.042
5 CHIAPPINI D , FESTUCCIA A , BELLA G . Coupled lattice Boltzmann finite volume method for conjugate heat transfer in porous media[J]. Numerical Heat Transfer(Part A: Applications), 2018, 73 (5): 291- 306.
doi: 10.1080/10407782.2018.1444868
6 HUSSAIN S . Finite element solution for MHD flow of nanofluids with heat and mass transfer through a porous media with thermal radiation, viscous dissipation and chemical reaction effects[J]. Advances in Applied Mathematics and Mechanics, 2017, 9 (4): 904- 923.
doi: 10.4208/aamm.2014.m793
7 JIANG Y , KHADILKAR M R , AL-DAHHAN M H , et al. CFD of multiphase flow in packed-bed reactors:I. k-fluid modeling issues[J].AIChE Journal,
8 GUNJAL P R , KASHID M N , RANADE V V , et al. Hydrodynamics of trickle-bed reactors: experiments and CFD modeling[J]. Industrial and Engineering Chemistry Research, 2005, 44 (16): 6278- 6294.
doi: 10.1021/ie0491037
9 TROUDI H , GHISS M , ELLEJMI M , et al. CFD simulation of multicomponent mixture within a packed Deethanizer column[J]. Heat and Mass Transfer, 2019, 1- 18.
10 ATMAKIDIS T , KENIG E Y . CFD-based analysis of the wall effect on the pressure drop in packed beds with moderate tube/particle diameter ratios in the laminar flow regime[J]. Chemical Engineering Journal, 2009, 155 (1): 404- 410.
11 KLKER M , KENIG E Y , PIECHOTA R , et al. CFD-based study on hydrodynamics and mass transfer in fixed catalyst beds[J]. Chemical Engineering and Technology, 2010, 28 (1): 31- 36.
12 RAHIMI R , ABBASPOUR D . Determination of pressure drop in wire mesh mist eliminator by CFD[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47 (9): 1504- 1508.
13 RAN X J , ZHU Q Y , LI Y . Investigation on heat and mass transfer in 3D woven fibrous material[J]. International Journal of Heat and Mass Transfer, 2011, 54 (15): 3575- 3586.
14 BRADSHAW P . The effect of wind-tunnel screens on nominally two-dimensional boundary layers[J]. Journal of Fluid Mechanics, 1965, 22 (4): 679- 687.
15 WU W T , LIU J F , LI W J , et al. Measurement and correlation of hydraulic resistance of flow through woven metal screens[J]. International Journal of Heat and Mass Transfer, 2005, 48 (14): 3008- 3017.
doi: 10.1016/j.ijheatmasstransfer.2005.01.038
16 SELTSAM M M . Experimental and theoretical study of a wide-angle diffuser flow with screens[J]. AIAA Journal, 1994, 33 (11): 2092- 2100.
17 GRITSKEVICH M S , GARBARUK A V , SCHVTZE J , et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow Turbulence and Combustion, 2012, 88 (3): 431- 449.
18 侯宗宗, 王宾宾, 王要伟, 等. 金属丝网的流场数值模拟分析[J]. 过滤与分离, 2017, 27 (2): 20- 24.
doi: 10.3969/j.issn.1005-8265.2017.02.005
HOU Zongzong , WANG Binbin , WANG Yaowei , et al. Numerical simulation analysis of flow field of metal wire mesh[J]. Journal of Filtration and Separation, 2017, 27 (2): 20- 24.
doi: 10.3969/j.issn.1005-8265.2017.02.005
19 ARMOUR J C , CANNON J N . Fluid flow through woven screens[J]. American Institute of Chemical Engineers Journal, 1968, 14 (3): 415- 420.
doi: 10.1002/aic.690140315
20 SCHUBAUER G B , SPANGENBERG W G . The effect of screens in wind-tunnel wide-angle diffusers[J]. Journal of the Franklin Institute, 1948, 246 (4): 341- 343.
doi: 10.1016/0016-0032(48)90874-6
21 KOŁODZIEJ A , JAROSZYN'SKI M , JANUS B , et al. An experimental study of the pressure drop in fluid flows through wire gauzes[J]. Chemical Engineering Communications, 2009, 196 (8): 932- 949.
doi: 10.1080/00986440902743851
22 COMITI J , SABIRI N E , MONTILLET A . Experimental characterization of flow regimes in various porous media: III: limit of Darcy′s or creeping flow regime for Newtonian and purely viscous non-Newtonian fluids[J]. Chemical Engineering Science, 2000, 55 (15): 3057- 3061.
doi: 10.1016/S0009-2509(99)00556-4
23 IRMAY S . On the theoretical derivation of Darcy and Forcheimer formulas[J]. Transactions American Geophysical Union, 1958, 39 (4): 702.
doi: 10.1029/TR039i004p00702
[1] 王心泉,王智猛,牛犇,蒋恒,冯春. 8度地震烈度区新民隧道出口处边坡的稳定性[J]. 山东大学学报 (工学版), 2023, 53(3): 23-30.
[2] 孙杰,张宏博,程钰,刘羽,张洪波,刘志鲲. 基于TDA填料的废旧轮胎条带加筋砂土边坡承载特性[J]. 山东大学学报 (工学版), 2023, 53(1): 49-59.
[3] 牛犇,张新伟,周玉,李婧,徐兴全,张一鸣. 基于连续-非连续元降雨工况三维边坡稳定性分析[J]. 山东大学学报 (工学版), 2023, 53(1): 92-99.
[4] 郭鹏宁,刘巍,袁浩,冯硕,王延刚. 基于微元离散模型的螺旋挤压脱水效率分析[J]. 山东大学学报 (工学版), 2023, 53(1): 114-121.
[5] 张一鸣,李赟鹏,李婧,丛俊余. 孔隙裂隙介质多场耦合数值计算进展[J]. 山东大学学报 (工学版), 2022, 52(6): 63-78.
[6] 郑卫琴,许杰,孙杰,武科. 复合地层TBM隧道管片受力特征[J]. 山东大学学报 (工学版), 2022, 52(4): 210-213.
[7] 章清涛,刘晓威,高健,孙玉海,闫庆亮,刘源,王昊. 坡顶荷载作用下废旧轮胎条带加筋边坡承载特性[J]. 山东大学学报 (工学版), 2022, 52(3): 70-79.
[8] 刘舫辰,石岩,李元鲁,王湛,杜文静,季万祥. 用于燃煤电厂的低温省煤器前烟道流动及磨损特性[J]. 山东大学学报 (工学版), 2022, 52(3): 100-108.
[9] 郑俊峰,陈晓燕,马正,陈青. 土石坝加固拓宽坝体变形及稳定性分析[J]. 山东大学学报 (工学版), 2022, 52(1): 85-92.
[10] 田利,毕文哲,SIDDIQUISarim Saleem,刘凯悦. 建筑结构抗下击暴流研究综述[J]. 山东大学学报 (工学版), 2021, 51(5): 32-41.
[11] 卢光兆,周博,徐锋,上官伟,王刚,张书博. 浅埋偏压隧道进洞施工围岩稳定分析[J]. 山东大学学报 (工学版), 2021, 51(4): 61-70.
[12] 李旭,安春国,王兆阳,王湛,季万祥. 火电厂双管式烟囱内筒的流动特性[J]. 山东大学学报 (工学版), 2021, 51(4): 106-110.
[13] 王春国. 硬岩隧道施工通风系统优化与抑尘效果评价[J]. 山东大学学报 (工学版), 2021, 51(3): 52-60.
[14] 王春国. 复合地层全断面硬岩隧道掘进机下穿立交桥研究[J]. 山东大学学报 (工学版), 2021, 51(3): 45-51.
[15] 孙杰,武科,郑扬,李树忱,袁超,王修伟. 城市地铁TBM隧道掘进诱发既有建筑物变形的空间属性效应[J]. 山东大学学报 (工学版), 2021, 51(1): 32-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[2] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[3] 王静,李玉江,张晓瑾, 毕研俊,陈位锁 . 粉煤灰去除水中活性紫KN-B[J]. 山东大学学报(工学版), 2006, 36(6): 100 -103 .
[4] 张 黎,李庆民,李清泉 . FACTS设备的电磁兼容问题展望[J]. 山东大学学报(工学版), 2007, 37(2): 52 -57 .
[5] 赵治广,王登杰,田云飞 . 基于灰色理论的路基沉降研究[J]. 山东大学学报(工学版), 2007, 37(3): 86 -88 .
[6] 张道强. 知识保持的嵌入方法[J]. 山东大学学报(工学版), 2010, 40(2): 1 -10 .
[7] 刘兆娟,刘锦波 . 基于输入输出反馈线性化三态Boost DC/DC变换器的新型控制策略[J]. 山东大学学报(工学版), 2008, 38(1): 43 -47 .
[8] 方炜, , 姜长生, , 钱承山 . 一类非线性不确定时滞系统的模糊跟踪控制[J]. 山东大学学报(工学版), 2007, 37(5): 47 -52 .
[9] 张宏博,苗海涛,宋修广. 长期交通荷载作用下粉砂土累积变形本构模型构建及数值积分格式[J]. 山东大学学报(工学版), 2010, 40(2): 59 -65 .
[10] 张玉华 王欣. 基于线性判别分析的加权零空间算法及在人脸识别中的应用[J]. 山东大学学报(工学版), 2009, 39(6): 31 -34 .