您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (6): 113-118.doi: 10.6040/j.issn.1672-3961.0.2019.317

• 机械与能动工程 • 上一篇    下一篇

基于TRNSYS的双U型地埋管换热影响因素分析

刘涛(),田野,马永志*()   

  1. 青岛大学机电工程学院, 山东 青岛 266022
  • 收稿日期:2019-06-19 出版日期:2019-12-20 发布日期:2019-12-17
  • 通讯作者: 马永志 E-mail:949090356@qq.com;hiking@126.com
  • 作者简介:刘涛(1994—),男,天津宝坻人,硕士研究生,主要研究方向为制冷节能技术. E-mail: 949090356@qq.com

Analysis of factors affecting heat transfer of double U-shaped buried tubes based on TRNSYS

Tao LIU(),Ye TIAN,Yongzhi MA*()   

  1. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266022, Shandong, China
  • Received:2019-06-19 Online:2019-12-20 Published:2019-12-17
  • Contact: Yongzhi MA E-mail:949090356@qq.com;hiking@126.com

摘要:

针对水平式埋管占地面积大、换热效果差及竖直式埋管初期投资高、施工难度大的现状,基于TRNSYS建立地源热泵双U型地埋管换热器瞬态仿真模型。在保证研究变量为唯一变量的条件下,通过仿真计算分析地埋管不同钻孔数、不同埋管深度以及不同孔间距对地埋管换热器性能的影响,模拟试验结果表明:增多钻孔数、加深钻孔深度、增大钻孔间距均可提高地埋管换热器的换热效果。本研究为地埋管换热效果与施工难度的平衡提供分析依据。

关键词: 双U型地埋管换热器, 孔数, 孔深, 孔间距, 地埋管出口水温

Abstract:

Because the horizontal buried tubes covered a large area, the heat transfer effect was poor, and the initial investment of the vertical buried tubes was high, the construction was difficult. A transient real-time simulation model of double U-shaped buried tubes heat exchanger was established with TRNSYS software. The factors, which could affect the heat transfer capacity of double U-shaped buried tubes heat exchanger, including the number and the spaceing of holes, and the depth of the buried tubes were analyzed under the condition of unique variable. The simulation experiment results showed that the heat transfer effect of buried tubes could be improved by increasing the number of holes, deepening drilling depth and increasing the spacing of the holes. It provided an analytical basis for the balance between the heat transfer effect of the buried tubes and the construction difficulty.

Key words: double U-shaped buried tube heat exchanger, number of holes, hole depth, hole spacing, outlet water temperature of buried tubes

中图分类号: 

  • TU83

图1

地源热泵机组"

表1

地埋管参数设置"

水平管埋深/m U型管外径/m U型管内径/m 管中心间距/m 钻孔半径/m U型管类型 设计温度/℃ 土壤初始温度/℃ 埋管热导率/
(kJ·(h·m·K)-1)
参考流量/
(kg·h-1)
回填材料热导率/
(kJ·(h·m·K)-1)
流体比热容/
(kJ·(kg·K)-1)
土壤传热系数/
(kJ·(h·m·K)-1)
土壤比热容/
(kJ·(m3·K)-1)
2.5 0.034 0.028 0.05 0.075 双U 7 13 1.512 11 910 4.68 4.19 3.96 2 200

图2

双U型地埋管结构示意图"

图3

仿真模型结果"

图4

40个孔对地埋管出水温度影响"

图5

80个孔对地埋管出水温度影响"

图6

120个孔对地埋管出水温度影响"

图7

70 m孔深对地埋管出水温度影响"

图8

100 m孔深对地埋管出水温度影响"

图9

130 m孔深对地埋管出水温度影响"

图10

3 m孔间距对地埋管出水温度影响"

图11

5 m孔间距对地埋管出水温度影响"

图12

7 m孔间距对地埋管出水温度影响"

1 尹畅昱.不同分层地质结构下地源热泵竖直双U埋管换热影响研究[D].重庆:重庆大学, 2014.
YIN Changyu. Study on the influence of vertical double-U buried heat transfer of ground source heat pump under different stratified geological structures[D]. Chongqing: Chongqing University, 2014.
2 吴盛威.地埋管换热器出水温度影响因素及与土壤温度的关系研究[D].天津:天津大学, 2016.
WU Shengwei. Influencing factors of water temperature in ground heat exchanger and its relationship with soil temperature[D].Tianjin: Tianjin University, 2016.
3 汪辰.地埋管换热器强化传热机理及特性研究[D].杭州:浙江理工大学, 2018.
WANG Chen. Study on heat transfer mechanism and characteristics of buried tube heat exchanger[D]. Hangzhou: Zhejiang Sci-Tech University, 2018.
4 尚少文, 潘欣, 徐颖, 等. 土壤比热容对地埋管换热器周围土壤温度影响的模拟[J]. 沈阳建筑大学学报(自然科学版), 2019, 35 (2): 379- 384.
SHANG Shaowen , PAN Xin , XU Ying , et al. Simulation of the influence of soil specific heat capacity on soil temperature around ground heat exchanger[J]. Journal of Shenyang Jianzhu University(Natural Science), 2019, 35 (2): 379- 384.
5 MEI V C . Theoretieal heat pump ground coil analysis with variable ground four-field boundary conditions[J]. AICHE Journal, 1986, 32 (7): 662- 667.
6 CUI Wenzhi , ZHOU Shiyu , LIU Xiangyang . Optimization of design and operation parameters for hybrid ground-source heat pump assisted with cooling tower[J]. Energy and Buildings, 2015, 99, 253- 262.
doi: 10.1016/j.enbuild.2015.04.034
7 YAVUZTURK C , SPITLER JD . A short timestep response factor model for vertical ground loop heap exchangers[J]. ASHRAE Transactions, 1999, 105 (2): 475- 485.
8 邵珠坤. 单U型地埋管换热影响因素分析[J]. 节能, 2017, 36 (12): 31- 33.
SHAO Zhukun . Analysis of factors affecting heat transfer of single U-shaped buried pipe[J]. Energy Conservation, 2017, 36 (12): 31- 33.
9 HAN Chanjuan , YU Bill . Sensitivity analysis of a vertical Geothermal heat pump system[J]. Applied Energy, 2016, 170, 148- 160.
doi: 10.1016/j.apenergy.2016.02.085
10 CARLI M D , FIORENZATO S , ZARRELLAA . Performance of heat pumps with direct expa-nsion in vertical ground heat exchangers in heating mode[J]. Energy Conversion & Management, 2015, 95, 120- 130.
11 LEE JS , SONG KS , AHN JH , et al. Comparison on the transient cooling performances of hybrid ground source heat pumps with various flow loop configurations[J]. Energy, 2015, 82, 678- 685.
doi: 10.1016/j.energy.2015.01.076
12 蒋绿林, 张亮, 侯亚祥, 等. 运行模式对土壤源太阳能热泵垂直埋管换热影响的研究[J]. 可再生能源, 2016, 34 (3): 347- 352.
JIANG Lulin , ZHANG Liang , HOU Yaxiang , et al. Study on the effect of operation mode on vertical buried heat transfer of soil source solar heat pump[J]. Renewable Energy, 2016, 34 (3): 347- 352.
13 尚少文, 朱天然, 刘兵红, 等. 基于TRNS-YS的地埋管换热器温度场变化规律研究[J]. 沈阳建筑大学学报(自然科学版), 2017, 33 (4): 744- 750.
SHANG Shaowen , ZHU Tianran , LIU Binghong , et al. Study on the variation of temperature field of buried tube heat exchanger based on TRNS-YS[J]. Journal of Shenyang Jianzhu University Natural Science, 2017, 33 (4): 744- 750.
14 FIDORW N , SZULGOWSKA-ZGRZYWA M . The influence of the ground coupled heat pump's labor on the ground temperature in the boreholes-study based on experimental data[J]. Applied Thermal Engineering, 2015, 82, 237- 245.
doi: 10.1016/j.applthermaleng.2015.02.035
15 NAILI N , ATTAR I , HAZAMI M , et al. First in situ operation performance test of ground source heat pump in Tunisia[J]. Energy Conversion and Management, 2013, 75, 292- 301.
doi: 10.1016/j.enconman.2013.06.014
16 赵国君.土壤源热泵地埋管换热器周围土壤温度场模拟与实验研究[D].北京:北京建筑大学, 2013.
ZHAO Guojun. Simulation and experimental study on soil temperature field around ground heat pump buried heat exchanger[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2013.
17 KWON O , BAE K J , PARK C . Cooling characteristics of ground source heat pump with heat exchange methods[J]. Renewable Energy, 2014, 71, 651- 657.
doi: 10.1016/j.renene.2014.06.026
18 梁意艺, 刘向龙. 土壤源热泵地埋管传热与机组性能的实验研究[J]. 制冷与空调, 2012, 26 (5): 500- 503.
doi: 10.3969/j.issn.1671-6612.2012.05.019
LIANG Yiyi , LIU Xianglong . Experimental study on heat transfer and unit performance of buried pipes in soil source heat pump[J]. Refrigeration and Air Conditioning, 2012, 26 (5): 500- 503.
doi: 10.3969/j.issn.1671-6612.2012.05.019
19 刘斯佳, 杨晓宇, 张山. 竖直埋管地源热泵地下温度场分析[J]. 区域供热, 2019, (2): 138- 141.
LIU Sijia , YANG Xiaoyu , ZHANG Shan . Analysis of underground temperature field of ground source heat pump with vertical buried pipe[J]. District Heating, 2019, (2): 138- 141.
20 韩斯东.地埋管地源热泵浅层土壤分层热物性测试实验及计算研究[D].内蒙古:内蒙古科技大学, 2015.
HAN Sidong.Experimental experiment and calculation of thermal properties of shallow soil layer in ground-source heat pump with buried pipe[D]. Inner Mongolia: Inner Mongolia University of Science and Technology, 2015.
21 杨少刚.基于TRNSYS地埋管地源热泵变流量系统仿真研究[D].济南:山东建筑大学, 2016.
YANG Shaogang. Study on the variable flow system of ground source heat pump based on TRNSYS[D]. Jinan: Shandong Jianzhu University, 2016.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[2] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[3] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[4] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28 -34 .
[5] 郑洪亮,孔凡利, , 田学雷 . Al-Cu合金成分变化对其凝固潜热影响的研究[J]. 山东大学学报(工学版), 2008, 38(2): 10 -12 .
[6] 王凯,孙奉仲,赵元宾,高明,高山 . 自然通风冷却塔进风口流场模型的建立及计算[J]. 山东大学学报(工学版), 2008, 38(1): 13 -17 .
[7] 马其华 王宜泰. 高密度电阻率法在煤矿界外巨空水探测上的应用[J]. 山东大学学报(工学版), 2009, 39(4): 107 -111 .
[8] 董成喜,吴德伟,何 晶 . 基于粗糙模糊集理论的卫星导航系统作战效能评估方法[J]. 山东大学学报(工学版), 2008, 38(4): 32 -36 .
[9] 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20 -26 .
[10] 王美,李和胜,李木森,田彬, . IIb型与Ib型金刚石热稳定性比较[J]. 山东大学学报(工学版), 2007, 37(6): 41 -43 .