山东大学学报 (工学版) ›› 2018, Vol. 48 ›› Issue (6): 56-66.doi: 10.6040/j.issn.1672-3961.0.2018.202
Xing LI1(),Zhenjie HOU1,Jiuzhen LIANG1,Xingzhi CHANG2
摘要:
针对当前基于加速度人体行为识别方法中存在的行为数据易受重力加速度影响以及空间信息欠缺等问题,提出一种基于线性加速度的多节点人体行为识别算法。通过分段双向去除重力加速度算法,去除传感器加速度中的重力加速度得到线性加速度;使用滑动均值滤波器滤除线性加速度与传感器加速度的颤抖运动,并对两种加速度中的冗余动作进行裁剪;分别从两种加速度中提取不同关节点数据间的动态时间规整算法(dynamic time warping, DTW)距离特征以及7种常规时域特征;利用支持向量机对人体行为进行分类。试验结果表明,该方法能有效提高人体行为识别的准确性。
中图分类号:
1 | MUKHOPADHYAY S C . Wearable sensors for human activity monitoring: a review[J]. IEEE Sensors Journal, 2014, 15 (3): 1321- 1330. |
2 |
EDWARDS J . Wireless sensors relay medical insight to patients and caregivers:special reports[J]. IEEE Signal Processing Magazine, 2012, 29 (3): 8- 12.
doi: 10.1109/MSP.2012.2183489 |
3 | KHAN A M , LEE Y K , LEE S Y , et al. A triaxial acclerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14 (5): 1166- 1172. |
4 | LEE S W , MASE K . Activity and location recognition using wearable sensors[J]. Pervasive Computing IEEE, 2002, 1 (3): 24- 32. |
5 | CHEN Y, XUE Y. A deep Learning approach to human activity recognition based on single accelerometer[C]//IEEE International Conference on System, Man, and Cybernetics. Budapest, Hungary: IEEE, 2016: 1488-1492. |
6 | BRZOSTOWSKI K , DRAPALA J , GRZECH A , et al. Adaptive decision support systems for automatic physical effort plan generation: data-driven approach[J]. Journal of Cybernetics, 2013, 44 (2-3): 204- 221. |
7 | 池小文, 倪友聪, 杜欣, 等. 基于智能手机的健身跑数据采集及演化建模[J]. 智能系统学报, 2017, 5 (12): 702- 709. |
CHI Xiaowei , NI Youcong , DU Xin , et al. Smartphone-based speed acquisition and evolutionary modeling for fitness running[J]. CAAI Transactions on Intelligent Systems, 2017, 5 (12): 702- 709. | |
8 |
REHBINDER H , HU X . Drift free attitude estimation for accelerated rigid bodies[J]. Automatica, 2004, 40 (4): 653- 659.
doi: 10.1016/j.automatica.2003.11.002 |
9 | 李文锋, 姚丙萌. 基于单三轴加速度传感器的人体活动状态识别[J]. 华中科技大学学报(自然科学版), 2016, 44 (4): 58- 62. |
LI Wenfeng , YAO Bingmeng . Recognition of human activities based on single triaxial accelerometer[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2016, 44 (4): 58- 62. | |
10 | 王昌喜.基于加速度信息的上肢动作识别系统设计及动作质量评价方法的研究[D].合肥:中国科学技术大学, 2010. |
WANG Changxi. Design of recongnition system and study of quality evaluation for upper limb movement based on acceleration[D]. Hefei: University of Science and Technology of China, 2010. | |
11 |
JOSHUA L , VARGHESE K . Accelerometer-based activity recognition in construction[J]. Journal of Computing in Civil Engineering, 2011, 25 (5): 370- 379.
doi: 10.1061/(ASCE)CP.1943-5487.0000097 |
12 | JOSHUA L , VARGHESE K . Automated recognition of construction labour activity using accelerometers in field situations[J]. International Journal of Productivity and Performance Management, 2014, 63 (7): 841- 862. |
13 | SAKOE H . Two-level DP-matching:a dynamic programming-based pattern matching algorithm for connected word recognition[J]. Readings in Speech Recognition, 1990, 27 (6): 180- 187. |
14 | SAENPHON T , PHIMOLTARES S , LURSINSAP C . Combining new fast opposite gradient search with ant colony optimization for solving travelling salesman problem[J]. Engineering Applications of Artificial Intelligence, 2014, 35 (2): 324- 334. |
15 |
ESCARIO J B , JIMENEZ J F , GIRON-SIERRA J M . Ant colony extended: experiments on the travelling salesman problem[J]. Expert Systems with Applications, 2015, 42 (1): 390- 410.
doi: 10.1016/j.eswa.2014.07.054 |
16 | 凌佩佩, 邱崧, 蔡茗名, 等. 结合特权信息的人体动作识别[J]. 中国图像图形学报, 2017, 22 (4): 482- 491. |
LING Peipei , QIU Song , CAI Mingming , et al. Human action recognition based on privileged information[J]. Journal of Image and Graphics, 2017, 22 (4): 482- 491. | |
17 | HOU C , NIE F , ZHANG C , et al. Multiple rank multi-linear SVM for matrix data classification[J]. Pattern Recognition, 2014, 47 (1): 454- 469. |
18 |
IOSIFIDIS A , GABBOUJ M . Multi-class support vector machine classifiers using intrinsic and penalty graphs[J]. Pattern Recognition, 2016, 55, 231- 246.
doi: 10.1016/j.patcog.2016.02.002 |
19 | 叶明全, 高凌云, 万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48 (3): 10- 16. |
YE Mingquan , GAO lingyun , WAN Chunyuan . Gene expression data classification based on artificial bee colony and SVM[J]. Journal of Shandong University(Engineering Science), 2018, 48 (3): 10- 16. | |
20 | CHEN Chen , ZHANG Baochang , HOU Zhenjie , et al. Action recognition from depth sequences using weighted fusion of 2D and 3D auto-correlation of gradients features[J]. Multimedia Tools and Applications, 2017, 76 (3): 4651- 4669. |
[1] | 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16. |
[2] | 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12. |
[3] | 刘岩,李幼军,陈萌. 基于EMD和SVM的抑郁症静息态脑电信号分类研究[J]. 山东大学学报(工学版), 2017, 47(3): 21-26. |
[4] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
[5] | 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83. |
[6] | 刘晓勇. 一种基于树核函数的半监督关系抽取方法研究[J]. 山东大学学报(工学版), 2015, 45(2): 22-26. |
[7] | 浩庆波, 牟少敏, 尹传环, 昌腾腾, 崔文斌. 一种基于聚类的快速局部支持向量机算法[J]. 山东大学学报(工学版), 2015, 45(1): 13-18. |
[8] | 李发权, 杨立才, 颜红博. 基于PCA-SVM多生理信息融合的情绪识别方法[J]. 山东大学学报(工学版), 2014, 44(6): 70-76. |
[9] | 周咏梅1,杨佳能2,阳爱民2. 面向文本情感分析的中文情感词典构建方法[J]. 山东大学学报(工学版), 2013, 43(6): 27-33. |
[10] | 王昊,华继学,范晓诗. 基于双联支持向量机的入侵检测技术[J]. 山东大学学报(工学版), 2013, 43(6): 53-56. |
[11] | 施珺,朱敏. 一种基于灰色系统和支持向量机的预测优化模型[J]. 山东大学学报(工学版), 2012, 42(5): 7-11. |
[12] | 赵加敏,冯爱民*,刘学军. 局部密度嵌入的结构单类支持向量机[J]. 山东大学学报(工学版), 2012, 42(4): 13-18. |
[13] | 潘冬寅,朱发,徐昇,业宁*. 结肠癌基因表达谱的特征选取研究[J]. 山东大学学报(工学版), 2012, 42(2): 23-29. |
[14] | 孙鹏,程世庆*,谢敬思,张海瑞. 预测混合生物质灰熔点的CV-GA-SVM模型[J]. 山东大学学报(工学版), 2012, 42(2): 108-111. |
[15] | 赵燕燕, 范丽亚. 多输出支持向量回归机在依赖时间的变分不等式中的应用[J]. 山东大学学报(工学版), 2011, 41(3): 23-30. |
|