山东大学学报 (工学版) ›› 2018, Vol. 48 ›› Issue (6): 67-73.doi: 10.6040/j.issn.1672-3961.0.2018.192
Cui JIN(),Hongyuan WANG*(),Shoubing CHEN
摘要:
基于检测出的行人图像容易出现错位和深度网络容易出现过拟合现象的问题,使用行人对齐网络和随机擦除数据增强,对行人数据集进行预处理。使图像生成不同程度的遮挡,并通过仿射估计分支中的空间变换网络层将图像中的错位进行修正。裁剪背景大的部分,填补行人图像缺失的部分,从而降低网络过拟合的现象,提高网络泛化能力。Market1501、DuckMTMC-reID和CUHK03数据集上进行试验,结果表明在rank-1的值达到84%左右。将随机擦除行人对齐网络方法与其他方法进行比较,发现随机擦除行人对齐网络的行人重识别方法的试验结果要好。
中图分类号:
1 | 王金, 刘洁, 高常鑫, 等. 基于姿态对齐的行人重识别方法[J]. 控制理论与应用, 2017, 34 (6): 837- 842. |
WANG Jin , LIU Jie , GAO Changxin , et al. Pedestrian re-identification method based on attitude alignment[J]. Control Theory & Applications, 2017, 34 (6): 837- 842. | |
2 | 杜久伦.多视图行人重识别算法研究与数据采集[D].济南:山东大学, 2017. |
DU Jiulun. Research on multi-view pedestrian recognition algorithm and data acquisition[D]. Jinan: Shandong University, 2017. | |
3 | 黄新宇, 许娇龙, 郭纲, 等. 基于增强聚合通道特征的实时行人重识别[J]. 激光与光电子学进展, 2017, 54 (9): 119- 127. |
HUANG Xinyu , XU Jiaolong , GUO Gang , et al. Real-time pedestrian re-identification based on enhanced aggregate channel characteristics[J]. Laser & Optoelectronics Progress, 2017, 54 (9): 119- 127. | |
4 |
张见威, 林文钊, 邱隆庆. 基于字典学习和Fisher判别稀疏表示的行人重识别方法[J]. 华南理工大学学报(自然科学版), 2017, 45 (7): 55- 62.
doi: 10.3969/j.issn.1000-565X.2017.07.008 |
ZHANG Jianwei , LIN Wenzhao , QIU Longqing . Pedestrian re-identification method based on dictionary learning and Fisher discriminant sparse representation[J]. Journal of South China University of Technology(Natural Science Edition), 2017, 45 (7): 55- 62.
doi: 10.3969/j.issn.1000-565X.2017.07.008 |
|
5 | CHEN D , YUAN Z , WANG J , et al. Exemplar-guided similarity learning on polynomial kernel feature map for person re-identification[J]. International Journal of Computer Vision, 2017, 123 (3): 1- 23. |
6 | WANG X , ZHENG W S , LI X , et al. Cross-scenario transfer person reidentification[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2016, 26 (8): 1447- 1460. |
7 | AHMED E, JONES M, MARKS T K. An improved deep learning architecture for person re-identification[C]//Proceedings of the 2015 IEEE Conf on Computer Vision and Pattern Recognition(CVPR). Boston, USA: IEEE Press, 2015: 3908-3916. |
8 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proceedings of the International Conference on Neural Information Processing Systems. Lake Tahoe, Spain: [s.n.], 2012: 1097-1105. |
9 | ZHAO L, LI X, WANG J, et al. Deeply-learned part-aligned representations for person re-identification[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision(ICCV). Venice, Italy: IEEE Press, 2017: 3239-3248. |
10 | CHEN Y C , ZHU X , ZHENG W S , et al. Person re-identification by camera correlation aware feature augmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2018, 40 (2): 392- 408. |
11 | JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]//Proceedings of the 2015 IEEE Conf on Computer Vision and Pattern Recognition(CVPR). Boston, USA: IEEE Press, 2015: 2017-2025. |
12 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2015 IEEE Conf on Computer Vision and Pattern Recognition(CVPR). Boston, USA: IEEE Press, 2015: 770-778. |
13 |
DING S , LIN L , WANG G , et al. Deep feature learning with relative distance comparison for person re-identification[J]. Pattern Recognition, 2015, 48 (10): 2993- 3003.
doi: 10.1016/j.patcog.2015.04.005 |
14 | ZHENG L, SHEN L, TIAN L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision(ICCV). Santiago, Chile: IEEE Press, 2015: 1116-1124. |
15 | LI W, ZHAO R, XIAO T, et al. DeepReID: deep filter pairing neural network for person re-identification[C]//Proceedings of the 2014 IEEE Computer Vision and Pattern Recognition(CVPR). Colombia, USA: IEEE Press, 2014: 152-159. |
16 | ZHENG Z, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE Press, 2017: 3774-3782. |
[1] | 陈大伟,闫昭*,刘昊岩. SVD系列算法在评分预测中的过拟合现象[J]. 山东大学学报(工学版), 2014, 44(3): 15-21. |
|